具有保形预测的不可控动态主体间的信号时序逻辑控制综合

IF 5.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xinyi Yu , Yiqi Zhao , Xiang Yin , Lars Lindemann
{"title":"具有保形预测的不可控动态主体间的信号时序逻辑控制综合","authors":"Xinyi Yu ,&nbsp;Yiqi Zhao ,&nbsp;Xiang Yin ,&nbsp;Lars Lindemann","doi":"10.1016/j.automatica.2025.112616","DOIUrl":null,"url":null,"abstract":"<div><div>The control of dynamical systems under temporal logic specifications among uncontrollable dynamic agents is challenging due to the agents’ a-priori unknown behavior. Existing works have considered the problem where either all agents are controllable, the agent models are deterministic and known, or no safety guarantees are provided. We propose a predictive control synthesis framework that guarantees, with high probability, the satisfaction of signal temporal logic (STL) tasks that are defined over a controllable system in the presence of uncontrollable stochastic agents. We use trajectory predictors and conformal prediction to construct probabilistic prediction regions for each uncontrollable agent that are valid over multiple future time steps. Specifically, we construct a normalized prediction region over all agents and time steps to reduce conservatism and increase data efficiency. We then formulate a worst-case bilevel mixed integer program (MIP) that accounts for all agent realizations within the prediction region to obtain an open-loop controller that provably guarantee task satisfaction with high probability. To efficiently solve this bilevel MIP, we propose an equivalent MIP program based on KKT conditions of the original bilevel formulation. Building upon this, we design a closed-loop controller, where both recursive feasibility and task satisfaction can be guaranteed with high probability. We illustrate our control synthesis framework on two case studies.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"183 ","pages":"Article 112616"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal temporal logic control synthesis among uncontrollable dynamic agents with conformal prediction\",\"authors\":\"Xinyi Yu ,&nbsp;Yiqi Zhao ,&nbsp;Xiang Yin ,&nbsp;Lars Lindemann\",\"doi\":\"10.1016/j.automatica.2025.112616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The control of dynamical systems under temporal logic specifications among uncontrollable dynamic agents is challenging due to the agents’ a-priori unknown behavior. Existing works have considered the problem where either all agents are controllable, the agent models are deterministic and known, or no safety guarantees are provided. We propose a predictive control synthesis framework that guarantees, with high probability, the satisfaction of signal temporal logic (STL) tasks that are defined over a controllable system in the presence of uncontrollable stochastic agents. We use trajectory predictors and conformal prediction to construct probabilistic prediction regions for each uncontrollable agent that are valid over multiple future time steps. Specifically, we construct a normalized prediction region over all agents and time steps to reduce conservatism and increase data efficiency. We then formulate a worst-case bilevel mixed integer program (MIP) that accounts for all agent realizations within the prediction region to obtain an open-loop controller that provably guarantee task satisfaction with high probability. To efficiently solve this bilevel MIP, we propose an equivalent MIP program based on KKT conditions of the original bilevel formulation. Building upon this, we design a closed-loop controller, where both recursive feasibility and task satisfaction can be guaranteed with high probability. We illustrate our control synthesis framework on two case studies.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"183 \",\"pages\":\"Article 112616\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825005126\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825005126","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于不可控动态智能体的先验未知行为,使得动态系统在时间逻辑规范下的控制具有挑战性。现有的研究主要考虑的是所有智能体都是可控的,智能体模型是确定的和已知的,或者不提供安全保证的问题。我们提出了一个预测控制综合框架,以高概率保证在存在不可控随机代理的可控系统上定义的信号时间逻辑(STL)任务的满足。我们使用轨迹预测器和保形预测来为每个不可控代理构建概率预测区域,这些区域在未来多个时间步上有效。具体而言,我们在所有代理和时间步长上构建了一个规范化的预测区域,以减少保守性并提高数据效率。然后,我们制定了一个考虑预测区域内所有智能体实现的最坏情况两级混合整数规划(MIP),以获得一个可证明保证高概率任务满足的开环控制器。为了有效地求解这种双层MIP,我们提出了一种基于原始双层公式的KKT条件的等效MIP方案。在此基础上,我们设计了一个闭环控制器,该控制器可以高概率地保证递归可行性和任务满意度。我们通过两个案例研究来说明我们的控制综合框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal temporal logic control synthesis among uncontrollable dynamic agents with conformal prediction
The control of dynamical systems under temporal logic specifications among uncontrollable dynamic agents is challenging due to the agents’ a-priori unknown behavior. Existing works have considered the problem where either all agents are controllable, the agent models are deterministic and known, or no safety guarantees are provided. We propose a predictive control synthesis framework that guarantees, with high probability, the satisfaction of signal temporal logic (STL) tasks that are defined over a controllable system in the presence of uncontrollable stochastic agents. We use trajectory predictors and conformal prediction to construct probabilistic prediction regions for each uncontrollable agent that are valid over multiple future time steps. Specifically, we construct a normalized prediction region over all agents and time steps to reduce conservatism and increase data efficiency. We then formulate a worst-case bilevel mixed integer program (MIP) that accounts for all agent realizations within the prediction region to obtain an open-loop controller that provably guarantee task satisfaction with high probability. To efficiently solve this bilevel MIP, we propose an equivalent MIP program based on KKT conditions of the original bilevel formulation. Building upon this, we design a closed-loop controller, where both recursive feasibility and task satisfaction can be guaranteed with high probability. We illustrate our control synthesis framework on two case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信