激光粉末床熔合CoCrFeNiMo0.5合金的高温疲劳寿命

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai Tong , Junming Xiong , Zhichao Ma , Chaofan Li , Jiakai Li , Hongwei Zhao , Luquan Ren , Chuliang Yan
{"title":"激光粉末床熔合CoCrFeNiMo0.5合金的高温疲劳寿命","authors":"Shuai Tong ,&nbsp;Junming Xiong ,&nbsp;Zhichao Ma ,&nbsp;Chaofan Li ,&nbsp;Jiakai Li ,&nbsp;Hongwei Zhao ,&nbsp;Luquan Ren ,&nbsp;Chuliang Yan","doi":"10.1016/j.jmrt.2025.09.134","DOIUrl":null,"url":null,"abstract":"<div><div>The inherent porosity in additive manufacturing is typically classified as fusion-related defects, and the low cycle fatigue (LCF) life of most metallic materials diminishes with increasing temperature. Notably, the CoCrFeNiMo<sub>0.5</sub> alloy containing fusion defects exhibited an anomalously enhanced LCF life at elevated temperatures compared to ambient conditions. Utilizing a custom-designed mechanical-thermal coupling fatigue testing apparatus, we conducted LCF assessments of the CoCrFeNiMo<sub>0.5</sub> alloy across a temperature spectrum from 20 °C to 600 °C. Specimens fabricated with three different laser power settings demonstrated increased fatigue life at 200 °C, with the specimen processed at 165 W laser power showing a 65.6 % improvement in LCF life at 200 °C relative to room temperature. Microstructural analysis across multiple scales revealed that porosity acts as a stress dissipation mechanism, mitigating localized stress concentrations, thereby retarding crack initiation and propagation, and ultimately extending fatigue life.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"39 ","pages":"Pages 1159-1167"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion defects-induced enhancement of fatigue life at elevated temperature of CoCrFeNiMo0.5 alloy produced by laser-powder bed fusion\",\"authors\":\"Shuai Tong ,&nbsp;Junming Xiong ,&nbsp;Zhichao Ma ,&nbsp;Chaofan Li ,&nbsp;Jiakai Li ,&nbsp;Hongwei Zhao ,&nbsp;Luquan Ren ,&nbsp;Chuliang Yan\",\"doi\":\"10.1016/j.jmrt.2025.09.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The inherent porosity in additive manufacturing is typically classified as fusion-related defects, and the low cycle fatigue (LCF) life of most metallic materials diminishes with increasing temperature. Notably, the CoCrFeNiMo<sub>0.5</sub> alloy containing fusion defects exhibited an anomalously enhanced LCF life at elevated temperatures compared to ambient conditions. Utilizing a custom-designed mechanical-thermal coupling fatigue testing apparatus, we conducted LCF assessments of the CoCrFeNiMo<sub>0.5</sub> alloy across a temperature spectrum from 20 °C to 600 °C. Specimens fabricated with three different laser power settings demonstrated increased fatigue life at 200 °C, with the specimen processed at 165 W laser power showing a 65.6 % improvement in LCF life at 200 °C relative to room temperature. Microstructural analysis across multiple scales revealed that porosity acts as a stress dissipation mechanism, mitigating localized stress concentrations, thereby retarding crack initiation and propagation, and ultimately extending fatigue life.</div></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"39 \",\"pages\":\"Pages 1159-1167\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785425023889\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425023889","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

增材制造中固有的多孔性通常被归类为与融合有关的缺陷,并且大多数金属材料的低周疲劳寿命随着温度的升高而降低。值得注意的是,与环境条件相比,含有熔合缺陷的CoCrFeNiMo0.5合金在高温下的LCF寿命异常延长。利用定制的机械-热耦合疲劳测试设备,我们在20°C至600°C的温度范围内对CoCrFeNiMo0.5合金进行了LCF评估。用三种不同的激光功率设置制作的试样在200°C下的疲劳寿命增加,在165 W激光功率下处理的试样在200°C下的LCF寿命相对于室温提高了65.6%。多尺度的微观结构分析表明,孔隙度作为应力消散机制,减轻了局部应力集中,从而延缓了裂纹的萌生和扩展,最终延长了疲劳寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fusion defects-induced enhancement of fatigue life at elevated temperature of CoCrFeNiMo0.5 alloy produced by laser-powder bed fusion

Fusion defects-induced enhancement of fatigue life at elevated temperature of CoCrFeNiMo0.5 alloy produced by laser-powder bed fusion
The inherent porosity in additive manufacturing is typically classified as fusion-related defects, and the low cycle fatigue (LCF) life of most metallic materials diminishes with increasing temperature. Notably, the CoCrFeNiMo0.5 alloy containing fusion defects exhibited an anomalously enhanced LCF life at elevated temperatures compared to ambient conditions. Utilizing a custom-designed mechanical-thermal coupling fatigue testing apparatus, we conducted LCF assessments of the CoCrFeNiMo0.5 alloy across a temperature spectrum from 20 °C to 600 °C. Specimens fabricated with three different laser power settings demonstrated increased fatigue life at 200 °C, with the specimen processed at 165 W laser power showing a 65.6 % improvement in LCF life at 200 °C relative to room temperature. Microstructural analysis across multiple scales revealed that porosity acts as a stress dissipation mechanism, mitigating localized stress concentrations, thereby retarding crack initiation and propagation, and ultimately extending fatigue life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信