交通荷载和干湿循环耦合作用下粉质粘土路基宏细观力学行为及退化机制

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Kangyu Wang , Ziliang Qiu , Haibo Hu , Miaomiao Sun , Jiangjing Wang
{"title":"交通荷载和干湿循环耦合作用下粉质粘土路基宏细观力学行为及退化机制","authors":"Kangyu Wang ,&nbsp;Ziliang Qiu ,&nbsp;Haibo Hu ,&nbsp;Miaomiao Sun ,&nbsp;Jiangjing Wang","doi":"10.1016/j.trgeo.2025.101725","DOIUrl":null,"url":null,"abstract":"<div><div>Existing studies on subgrade soil degradation predominantly isolate traffic loading or dry-wet cycles, neglecting their synergistic impacts and leaving microscale mechanisms underlying macroscale weakening poorly quantified. This study addresses these gaps through a multiscale investigation of silty clay subgrades under coupled traffic loading and cyclic hydration-dehydration using direct shear tests, dynamic triaxial tests, and advanced imaging techniques (computed tomography [CT], scanning electron microscopy [SEM], and mercury intrusion porosimetry [MIP]). Key findings reveal biphasic strength degradation: cohesion (<em>c</em>) decreases by 13.02–21.68 % after five cycles, stabilizing after the second cycle, while the internal friction angle (<em>φ</em>) maintains 89.49 % of the initial capacity. Dynamic resilience modulus (<em>M<sub>R</sub></em>) decreases by 33 % during the initial cycles, with cumulative strains reaching 12.16 % under low confinement (20 kPa) and high moisture (22 %). CT quantification identifies macropores (&gt;100 μm) as dominant (99.95 % porosity), driven by micropores coalescence, linearly correlating with axial strain (0.27 % per 1 % porosity increase at 20 kPa. A refined hyperbolic model, distinct from standard formulations by incorporating moisture-dependent decay parameters (<em>a, b</em>) that capture cyclic hydration effects, accurately predicts strain stabilization (<em>R</em><sup>2</sup> &gt; 0.96), validated against experimental data. These results establish explicit linkages between pore network dynamics and mechanical degradation, offering a paradigm shift from isolated to coupled conditioning frameworks and providing practical implications for designing climate-resilient subgrades.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"55 ","pages":"Article 101725"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macro-meso mechanical behavior and degradation mechanisms of silty clay subgrade subjected to coupled traffic loading and dry-wet cycles\",\"authors\":\"Kangyu Wang ,&nbsp;Ziliang Qiu ,&nbsp;Haibo Hu ,&nbsp;Miaomiao Sun ,&nbsp;Jiangjing Wang\",\"doi\":\"10.1016/j.trgeo.2025.101725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing studies on subgrade soil degradation predominantly isolate traffic loading or dry-wet cycles, neglecting their synergistic impacts and leaving microscale mechanisms underlying macroscale weakening poorly quantified. This study addresses these gaps through a multiscale investigation of silty clay subgrades under coupled traffic loading and cyclic hydration-dehydration using direct shear tests, dynamic triaxial tests, and advanced imaging techniques (computed tomography [CT], scanning electron microscopy [SEM], and mercury intrusion porosimetry [MIP]). Key findings reveal biphasic strength degradation: cohesion (<em>c</em>) decreases by 13.02–21.68 % after five cycles, stabilizing after the second cycle, while the internal friction angle (<em>φ</em>) maintains 89.49 % of the initial capacity. Dynamic resilience modulus (<em>M<sub>R</sub></em>) decreases by 33 % during the initial cycles, with cumulative strains reaching 12.16 % under low confinement (20 kPa) and high moisture (22 %). CT quantification identifies macropores (&gt;100 μm) as dominant (99.95 % porosity), driven by micropores coalescence, linearly correlating with axial strain (0.27 % per 1 % porosity increase at 20 kPa. A refined hyperbolic model, distinct from standard formulations by incorporating moisture-dependent decay parameters (<em>a, b</em>) that capture cyclic hydration effects, accurately predicts strain stabilization (<em>R</em><sup>2</sup> &gt; 0.96), validated against experimental data. These results establish explicit linkages between pore network dynamics and mechanical degradation, offering a paradigm shift from isolated to coupled conditioning frameworks and providing practical implications for designing climate-resilient subgrades.</div></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":\"55 \",\"pages\":\"Article 101725\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391225002442\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225002442","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

现有的路基土壤退化研究主要是孤立的交通荷载或干湿循环,忽视了它们的协同影响,并且对宏观尺度下的微观机制缺乏量化。本研究通过使用直接剪切试验、动态三轴试验和先进的成像技术(计算机断层扫描[CT]、扫描电子显微镜[SEM]和汞侵入孔隙测定法[MIP])对耦合交通荷载和循环水化脱水作用下粉质粘土路基的多尺度研究来解决这些空白。关键结果表明:两相强度退化:黏聚力(c)在5次循环后下降13.02 ~ 21.68%,在第2次循环后趋于稳定,内摩擦角(φ)保持在初始容量的89.49%;在初始循环过程中,动态回弹模量(MR)降低了33%,在低约束(20 kPa)和高湿度(22%)条件下,累积应变达到12.16%。CT量化发现,在20 kPa下,大孔隙(>100 μm)占主导地位(孔隙度为99.95%),由微孔隙聚结驱动,与轴向应变呈线性相关(孔隙度每增加1%,轴向应变增加0.27%)。一个精致的双曲模型,不同于标准公式,通过纳入水分依赖的衰减参数(A, b),捕获循环水化效应,准确地预测应变稳定性(R2 > 0.96),通过实验数据验证。这些结果建立了孔隙网络动力学和机械退化之间的明确联系,提供了从孤立调节框架到耦合调节框架的范式转变,并为设计气候适应性路基提供了实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macro-meso mechanical behavior and degradation mechanisms of silty clay subgrade subjected to coupled traffic loading and dry-wet cycles
Existing studies on subgrade soil degradation predominantly isolate traffic loading or dry-wet cycles, neglecting their synergistic impacts and leaving microscale mechanisms underlying macroscale weakening poorly quantified. This study addresses these gaps through a multiscale investigation of silty clay subgrades under coupled traffic loading and cyclic hydration-dehydration using direct shear tests, dynamic triaxial tests, and advanced imaging techniques (computed tomography [CT], scanning electron microscopy [SEM], and mercury intrusion porosimetry [MIP]). Key findings reveal biphasic strength degradation: cohesion (c) decreases by 13.02–21.68 % after five cycles, stabilizing after the second cycle, while the internal friction angle (φ) maintains 89.49 % of the initial capacity. Dynamic resilience modulus (MR) decreases by 33 % during the initial cycles, with cumulative strains reaching 12.16 % under low confinement (20 kPa) and high moisture (22 %). CT quantification identifies macropores (>100 μm) as dominant (99.95 % porosity), driven by micropores coalescence, linearly correlating with axial strain (0.27 % per 1 % porosity increase at 20 kPa. A refined hyperbolic model, distinct from standard formulations by incorporating moisture-dependent decay parameters (a, b) that capture cyclic hydration effects, accurately predicts strain stabilization (R2 > 0.96), validated against experimental data. These results establish explicit linkages between pore network dynamics and mechanical degradation, offering a paradigm shift from isolated to coupled conditioning frameworks and providing practical implications for designing climate-resilient subgrades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信