基于实验技术的页岩储层润湿性变化预测CNN-LSTM混合模型

IF 4.6 0 ENERGY & FUELS
Mohammed Ali Badjadi , Haiyan Zhu , Peng Zhao , Fengshou Zhang , Dali Hou , Liang Huang , Marembo Micheal
{"title":"基于实验技术的页岩储层润湿性变化预测CNN-LSTM混合模型","authors":"Mohammed Ali Badjadi ,&nbsp;Haiyan Zhu ,&nbsp;Peng Zhao ,&nbsp;Fengshou Zhang ,&nbsp;Dali Hou ,&nbsp;Liang Huang ,&nbsp;Marembo Micheal","doi":"10.1016/j.geoen.2025.214217","DOIUrl":null,"url":null,"abstract":"<div><div>The study proposes a hybrid model from Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) for the optimization of CO<sub>2</sub> sequestration in low clay or organic content, brittle, quartz-rich, siliceous shale reservoirs. The model solves the problem of wettability prediction under the low permeability of shale and complex fractures, which triggers high computational complexity and low generalization of conventional and existing machine learning methods. Using quartz as a proxy for siliceous shale, we train the model with CT scan data, SEM, high-speed camera images, and geomechanical measurements under supercritical CO<sub>2</sub> (SC-CO<sub>2</sub>) and water injection conditions. SC-CO<sub>2</sub> injection increases quartz porosity by 4.0 % and reverses wettability to hydrophobic in order to expand storage capacity, but decreases caprock sealing. Water injection increases porosity by 2.8 %, doubles permeability, and promotes hydrophilic wettability to favor CO<sub>2</sub> trapping. The model achieves 92 % accuracy (F1-score 0.905 for hydraulic fractures) and low error rates (MSE 0.015 for porosity, 0.018 for wettability) with real-time CO<sub>2</sub> injection optimization possible. Validation in organic- and clay-rich reservoirs would be required for broader applicability, but for siliceous shales, the model is remarkably adequate.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"257 ","pages":"Article 214217"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid CNN-LSTM model for predicting wettability alterations in shale reservoir based on experimental techniques\",\"authors\":\"Mohammed Ali Badjadi ,&nbsp;Haiyan Zhu ,&nbsp;Peng Zhao ,&nbsp;Fengshou Zhang ,&nbsp;Dali Hou ,&nbsp;Liang Huang ,&nbsp;Marembo Micheal\",\"doi\":\"10.1016/j.geoen.2025.214217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study proposes a hybrid model from Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) for the optimization of CO<sub>2</sub> sequestration in low clay or organic content, brittle, quartz-rich, siliceous shale reservoirs. The model solves the problem of wettability prediction under the low permeability of shale and complex fractures, which triggers high computational complexity and low generalization of conventional and existing machine learning methods. Using quartz as a proxy for siliceous shale, we train the model with CT scan data, SEM, high-speed camera images, and geomechanical measurements under supercritical CO<sub>2</sub> (SC-CO<sub>2</sub>) and water injection conditions. SC-CO<sub>2</sub> injection increases quartz porosity by 4.0 % and reverses wettability to hydrophobic in order to expand storage capacity, but decreases caprock sealing. Water injection increases porosity by 2.8 %, doubles permeability, and promotes hydrophilic wettability to favor CO<sub>2</sub> trapping. The model achieves 92 % accuracy (F1-score 0.905 for hydraulic fractures) and low error rates (MSE 0.015 for porosity, 0.018 for wettability) with real-time CO<sub>2</sub> injection optimization possible. Validation in organic- and clay-rich reservoirs would be required for broader applicability, but for siliceous shales, the model is remarkably adequate.</div></div>\",\"PeriodicalId\":100578,\"journal\":{\"name\":\"Geoenergy Science and Engineering\",\"volume\":\"257 \",\"pages\":\"Article 214217\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenergy Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949891025005755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025005755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

该研究提出了一种卷积神经网络(CNN)和长短期记忆(LSTM)的混合模型,用于优化低粘土或有机含量、脆性、富含石英的硅质页岩储层的二氧化碳封存。该模型解决了低渗透页岩和复杂裂缝条件下的润湿性预测问题,该问题引发了传统和现有机器学习方法的高计算复杂度和低泛化。我们使用石英作为硅质页岩的替代物,在超临界CO2 (SC-CO2)和注水条件下使用CT扫描数据、SEM、高速相机图像和地质力学测量数据训练模型。注入SC-CO2可使石英孔隙度提高4.0 %,并将润湿性逆转为疏水性,以扩大储层容量,但会降低盖层密封性。注水可使孔隙度提高2.8 %,渗透率提高一倍,并促进亲水性润湿性,有利于CO2捕获。该模型的准确率为92% %(水力裂缝的f1得分为0.905),错误率低(孔隙度的MSE为0.015,润湿性的MSE为0.018),可以实现实时CO2注入优化。为了更广泛的适用性,需要在富含有机和粘土的储层中进行验证,但对于硅质页岩,该模型非常足够。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid CNN-LSTM model for predicting wettability alterations in shale reservoir based on experimental techniques
The study proposes a hybrid model from Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) for the optimization of CO2 sequestration in low clay or organic content, brittle, quartz-rich, siliceous shale reservoirs. The model solves the problem of wettability prediction under the low permeability of shale and complex fractures, which triggers high computational complexity and low generalization of conventional and existing machine learning methods. Using quartz as a proxy for siliceous shale, we train the model with CT scan data, SEM, high-speed camera images, and geomechanical measurements under supercritical CO2 (SC-CO2) and water injection conditions. SC-CO2 injection increases quartz porosity by 4.0 % and reverses wettability to hydrophobic in order to expand storage capacity, but decreases caprock sealing. Water injection increases porosity by 2.8 %, doubles permeability, and promotes hydrophilic wettability to favor CO2 trapping. The model achieves 92 % accuracy (F1-score 0.905 for hydraulic fractures) and low error rates (MSE 0.015 for porosity, 0.018 for wettability) with real-time CO2 injection optimization possible. Validation in organic- and clay-rich reservoirs would be required for broader applicability, but for siliceous shales, the model is remarkably adequate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信