多纤维钨纤维增强钨复合材料高温退火后的热稳定性及其机械完整性

IF 2 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Daniel Ahlin Heikkinen Wartacz , Till Höschen , Johann Riesch , Karen Pantleon , Wolfgang Pantleon
{"title":"多纤维钨纤维增强钨复合材料高温退火后的热稳定性及其机械完整性","authors":"Daniel Ahlin Heikkinen Wartacz ,&nbsp;Till Höschen ,&nbsp;Johann Riesch ,&nbsp;Karen Pantleon ,&nbsp;Wolfgang Pantleon","doi":"10.1016/j.fusengdes.2025.115438","DOIUrl":null,"url":null,"abstract":"<div><div>Tungsten is the material of choice for plasma-facing components in future fusion reactors due to its high melting point, good thermal conductivity and strength. The brittleness of tungsten at temperatures below its brittle-to-ductile transition, however, is still a challenge. The development of tungsten fiber-reinforced tungsten (W<span><math><msub><mrow></mrow><mrow><mi>f</mi></mrow></msub></math></span>/W) composites aims to mitigate tungsten’s brittleness by achieving pseudo-ductility. Despite advancements, the high heat fluxes in future fusion reactors pose a risk for deteriorating the otherwise improved mechanical properties of W<span><math><msub><mrow></mrow><mrow><mi>f</mi></mrow></msub></math></span>/W composites due to restoration processes in the microstructure occurring at high operation temperatures. This study focuses on assessing the microstructural evolution at 1450 °C and the integrity of the mechanical properties of a W<span><math><msub><mrow></mrow><mrow><mi>f</mi></mrow></msub></math></span>/W composite after annealing for 2 days. Mechanical performance is assessed by three-point bending tests according to ASTM E399-23. The results show degradation of the pseudo-ductile behavior, even if some pseudo-ductility is still preserved. Microstructural investigation by electron backscatter diffraction (ESBD) shows remarkable differences between the microstructure evolution in individual fibers during annealing.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"222 ","pages":"Article 115438"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal stability of multi-fiber tungsten fiber-reinforced tungsten composites and their mechanical integrity after high temperature annealing\",\"authors\":\"Daniel Ahlin Heikkinen Wartacz ,&nbsp;Till Höschen ,&nbsp;Johann Riesch ,&nbsp;Karen Pantleon ,&nbsp;Wolfgang Pantleon\",\"doi\":\"10.1016/j.fusengdes.2025.115438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tungsten is the material of choice for plasma-facing components in future fusion reactors due to its high melting point, good thermal conductivity and strength. The brittleness of tungsten at temperatures below its brittle-to-ductile transition, however, is still a challenge. The development of tungsten fiber-reinforced tungsten (W<span><math><msub><mrow></mrow><mrow><mi>f</mi></mrow></msub></math></span>/W) composites aims to mitigate tungsten’s brittleness by achieving pseudo-ductility. Despite advancements, the high heat fluxes in future fusion reactors pose a risk for deteriorating the otherwise improved mechanical properties of W<span><math><msub><mrow></mrow><mrow><mi>f</mi></mrow></msub></math></span>/W composites due to restoration processes in the microstructure occurring at high operation temperatures. This study focuses on assessing the microstructural evolution at 1450 °C and the integrity of the mechanical properties of a W<span><math><msub><mrow></mrow><mrow><mi>f</mi></mrow></msub></math></span>/W composite after annealing for 2 days. Mechanical performance is assessed by three-point bending tests according to ASTM E399-23. The results show degradation of the pseudo-ductile behavior, even if some pseudo-ductility is still preserved. Microstructural investigation by electron backscatter diffraction (ESBD) shows remarkable differences between the microstructure evolution in individual fibers during annealing.</div></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":\"222 \",\"pages\":\"Article 115438\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379625006349\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379625006349","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

钨因其高熔点、良好的导热性和强度而成为未来聚变反应堆等离子体组件的首选材料。然而,钨在低于其脆性到延性转变的温度下的脆性仍然是一个挑战。钨纤维增强钨(Wf/W)复合材料的发展旨在通过实现准延性来减轻钨的脆性。尽管取得了进步,但由于高温下微观结构的恢复过程,未来聚变反应堆的高热流可能会导致Wf/W复合材料的力学性能恶化。本研究的重点是评估1450℃下Wf/W复合材料退火2天后的显微组织演变和力学性能的完整性。机械性能根据ASTM E399-23通过三点弯曲试验进行评估。结果表明,在保留部分伪延性的情况下,材料的伪延性有所退化。电子背散射衍射(ESBD)的微观结构研究表明,退火过程中不同纤维的微观结构演变存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal stability of multi-fiber tungsten fiber-reinforced tungsten composites and their mechanical integrity after high temperature annealing
Tungsten is the material of choice for plasma-facing components in future fusion reactors due to its high melting point, good thermal conductivity and strength. The brittleness of tungsten at temperatures below its brittle-to-ductile transition, however, is still a challenge. The development of tungsten fiber-reinforced tungsten (Wf/W) composites aims to mitigate tungsten’s brittleness by achieving pseudo-ductility. Despite advancements, the high heat fluxes in future fusion reactors pose a risk for deteriorating the otherwise improved mechanical properties of Wf/W composites due to restoration processes in the microstructure occurring at high operation temperatures. This study focuses on assessing the microstructural evolution at 1450 °C and the integrity of the mechanical properties of a Wf/W composite after annealing for 2 days. Mechanical performance is assessed by three-point bending tests according to ASTM E399-23. The results show degradation of the pseudo-ductile behavior, even if some pseudo-ductility is still preserved. Microstructural investigation by electron backscatter diffraction (ESBD) shows remarkable differences between the microstructure evolution in individual fibers during annealing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信