符合iter标准和交叉轧制钨等级拉伸性能的各向异性

IF 2 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Dmitry Terentyev , Chao Yin , Chih-Cheng Chang , Ze Chen , Shifeng Mao , Minyou Ye
{"title":"符合iter标准和交叉轧制钨等级拉伸性能的各向异性","authors":"Dmitry Terentyev ,&nbsp;Chao Yin ,&nbsp;Chih-Cheng Chang ,&nbsp;Ze Chen ,&nbsp;Shifeng Mao ,&nbsp;Minyou Ye","doi":"10.1016/j.fusengdes.2025.115457","DOIUrl":null,"url":null,"abstract":"<div><div>This study experimentally investigates the tensile properties of five tungsten grades for fusion applications at temperatures of 300 °C, 500 °C, and 800 °C, focusing on the influence of microstructural characteristics such as texture, grain shape aspect ratio, and grain boundary density. Texture analysis based on electron backscatter diffraction highlights diverse components in all tungsten grades. The Taylor factor and strength anisotropy variations suggest that texture is not the sole determinant of strength. Grain shape aspect ratio (short-to-long axis ratio) affects strength anisotropy, increasing at 300 °C and decreasing at 500 °C, converging at 800 °C. The anisotropy of uniform elongation and post-necking toughness decreases with grain shape aspect ratio at 300 °C, transitioning at 500 °C, and nearly disappears at 800 °C. Yield strength correlates with high-angle grain boundary density at 300 °C and 500 °C, which indicates that dislocation-grain boundary interaction is a thermally activated process in this temperature range.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"222 ","pages":"Article 115457"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropy in tensile properties of ITER-conformant and cross-rolled tungsten grades\",\"authors\":\"Dmitry Terentyev ,&nbsp;Chao Yin ,&nbsp;Chih-Cheng Chang ,&nbsp;Ze Chen ,&nbsp;Shifeng Mao ,&nbsp;Minyou Ye\",\"doi\":\"10.1016/j.fusengdes.2025.115457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study experimentally investigates the tensile properties of five tungsten grades for fusion applications at temperatures of 300 °C, 500 °C, and 800 °C, focusing on the influence of microstructural characteristics such as texture, grain shape aspect ratio, and grain boundary density. Texture analysis based on electron backscatter diffraction highlights diverse components in all tungsten grades. The Taylor factor and strength anisotropy variations suggest that texture is not the sole determinant of strength. Grain shape aspect ratio (short-to-long axis ratio) affects strength anisotropy, increasing at 300 °C and decreasing at 500 °C, converging at 800 °C. The anisotropy of uniform elongation and post-necking toughness decreases with grain shape aspect ratio at 300 °C, transitioning at 500 °C, and nearly disappears at 800 °C. Yield strength correlates with high-angle grain boundary density at 300 °C and 500 °C, which indicates that dislocation-grain boundary interaction is a thermally activated process in this temperature range.</div></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":\"222 \",\"pages\":\"Article 115457\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379625006532\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379625006532","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究在300°C、500°C和800°C的温度下实验研究了5种用于熔合的钨等级的拉伸性能,重点研究了显微组织特征(如织构、晶粒形状长径比和晶界密度)的影响。基于电子背散射衍射的织构分析强调了所有钨等级中不同成分的存在。泰勒因子和强度各向异性的变化表明,织构不是强度的唯一决定因素。晶粒形状长径比(长短轴比)影响强度各向异性,在300℃时增大,在500℃时减小,在800℃时收敛。均匀伸长率和后颈韧性的各向异性在300℃时随晶粒长径比减小,在500℃时发生过渡,在800℃时基本消失。在300℃和500℃时,屈服强度与大角度晶界密度相关,表明在该温度范围内,位错-晶界相互作用是一个热激活过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropy in tensile properties of ITER-conformant and cross-rolled tungsten grades
This study experimentally investigates the tensile properties of five tungsten grades for fusion applications at temperatures of 300 °C, 500 °C, and 800 °C, focusing on the influence of microstructural characteristics such as texture, grain shape aspect ratio, and grain boundary density. Texture analysis based on electron backscatter diffraction highlights diverse components in all tungsten grades. The Taylor factor and strength anisotropy variations suggest that texture is not the sole determinant of strength. Grain shape aspect ratio (short-to-long axis ratio) affects strength anisotropy, increasing at 300 °C and decreasing at 500 °C, converging at 800 °C. The anisotropy of uniform elongation and post-necking toughness decreases with grain shape aspect ratio at 300 °C, transitioning at 500 °C, and nearly disappears at 800 °C. Yield strength correlates with high-angle grain boundary density at 300 °C and 500 °C, which indicates that dislocation-grain boundary interaction is a thermally activated process in this temperature range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信