社交网络中的主动推荐:用因果推理引导用户兴趣

IF 14.8
Hang Pan , Shuxian Bi , Wenjie Wang , Haoxuan Li , Peng Wu , Fuli Feng
{"title":"社交网络中的主动推荐:用因果推理引导用户兴趣","authors":"Hang Pan ,&nbsp;Shuxian Bi ,&nbsp;Wenjie Wang ,&nbsp;Haoxuan Li ,&nbsp;Peng Wu ,&nbsp;Fuli Feng","doi":"10.1016/j.aiopen.2025.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Recommending items that solely cater to users’ historical interests narrows users’ horizons. Recent works have considered steering target users beyond their historical interests by directly adjusting items exposed to them. However, the recommended items for direct steering might not align perfectly with the evolution of users’ interests, detrimentally affecting the target users’ experience.</div><div>To avoid this issue, we propose a new task named <em>Proactive Recommendation in Social Networks</em> (<strong>PRSN</strong>) that indirectly steers users’ interest by utilizing the influence of social neighbors, <em>i.e.,</em>indirect steering by adjusting the exposure of a target item to target users’ neighbors. The key to PRSN lies in answering an interventional question: <em>what would a target user’s feedback be on a target item if the item is exposed to the user’s different neighbors?</em> To answer this question, we resort to causal inference and formalize PRSN as: (1) estimating the potential feedback of a user on an item, under the network interference by the item’s exposure to the user’s neighbors; and (2) adjusting the exposure of a target item to target users’ neighbors to trade-off steering performance and the damage to the neighbors’ experience. To this end, we propose a <strong>N</strong>eighbor <strong>I</strong>nterference <strong>Rec</strong>ommendation (<strong>NIRec</strong>) framework with two modules: (1) an interference representation-based estimation module for modeling potential feedback; (2) a post-learning-based optimization module for adjusting a target item’s exposure to trade-off steering performance and the neighbors’ experience through greedy search. We conduct extensive semi-simulation experiments on real-world datasets, validating the steering effectiveness of NIRec. The code is available at <span><span>https://github.com/HungPaan/NIRec</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"6 ","pages":"Pages 130-141"},"PeriodicalIF":14.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proactive Recommendation in Social Networks: Steering user interest with causal inference\",\"authors\":\"Hang Pan ,&nbsp;Shuxian Bi ,&nbsp;Wenjie Wang ,&nbsp;Haoxuan Li ,&nbsp;Peng Wu ,&nbsp;Fuli Feng\",\"doi\":\"10.1016/j.aiopen.2025.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recommending items that solely cater to users’ historical interests narrows users’ horizons. Recent works have considered steering target users beyond their historical interests by directly adjusting items exposed to them. However, the recommended items for direct steering might not align perfectly with the evolution of users’ interests, detrimentally affecting the target users’ experience.</div><div>To avoid this issue, we propose a new task named <em>Proactive Recommendation in Social Networks</em> (<strong>PRSN</strong>) that indirectly steers users’ interest by utilizing the influence of social neighbors, <em>i.e.,</em>indirect steering by adjusting the exposure of a target item to target users’ neighbors. The key to PRSN lies in answering an interventional question: <em>what would a target user’s feedback be on a target item if the item is exposed to the user’s different neighbors?</em> To answer this question, we resort to causal inference and formalize PRSN as: (1) estimating the potential feedback of a user on an item, under the network interference by the item’s exposure to the user’s neighbors; and (2) adjusting the exposure of a target item to target users’ neighbors to trade-off steering performance and the damage to the neighbors’ experience. To this end, we propose a <strong>N</strong>eighbor <strong>I</strong>nterference <strong>Rec</strong>ommendation (<strong>NIRec</strong>) framework with two modules: (1) an interference representation-based estimation module for modeling potential feedback; (2) a post-learning-based optimization module for adjusting a target item’s exposure to trade-off steering performance and the neighbors’ experience through greedy search. We conduct extensive semi-simulation experiments on real-world datasets, validating the steering effectiveness of NIRec. The code is available at <span><span>https://github.com/HungPaan/NIRec</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"6 \",\"pages\":\"Pages 130-141\"},\"PeriodicalIF\":14.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651025000129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651025000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只推荐迎合用户历史兴趣的商品会缩小用户的视野。最近的作品考虑通过直接调整暴露在目标用户面前的项目来引导目标用户超越他们的历史兴趣。然而,直接引导的推荐项目可能与用户兴趣的演变不完全一致,从而对目标用户的体验产生不利影响。为了避免这一问题,我们提出了一种新的任务,即主动推荐(PRSN),它通过利用社会邻居的影响间接引导用户的兴趣,即通过调整目标项目对目标用户邻居的曝光来间接引导。PRSN的关键在于回答一个干涉性问题:如果一个目标物品暴露给用户的不同邻居,目标用户对该物品的反馈会是什么?为了回答这个问题,我们采用因果推理,并将PRSN形式化为:(1)在网络干扰下,估计用户对物品的潜在反馈,该物品暴露于用户的邻居;(2)调整目标物品对目标用户邻居的暴露,以权衡转向性能和对邻居体验的损害。为此,我们提出了一个包含两个模块的邻居干扰推荐(NIRec)框架:(1)基于干扰表示的估计模块,用于建模潜在反馈;(2)基于后学习的优化模块,通过贪婪搜索调整目标项目对权衡转向性能的暴露和邻居的经验。我们在真实世界的数据集上进行了大量的半模拟实验,验证了NIRec的转向有效性。代码可在https://github.com/HungPaan/NIRec上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proactive Recommendation in Social Networks: Steering user interest with causal inference
Recommending items that solely cater to users’ historical interests narrows users’ horizons. Recent works have considered steering target users beyond their historical interests by directly adjusting items exposed to them. However, the recommended items for direct steering might not align perfectly with the evolution of users’ interests, detrimentally affecting the target users’ experience.
To avoid this issue, we propose a new task named Proactive Recommendation in Social Networks (PRSN) that indirectly steers users’ interest by utilizing the influence of social neighbors, i.e.,indirect steering by adjusting the exposure of a target item to target users’ neighbors. The key to PRSN lies in answering an interventional question: what would a target user’s feedback be on a target item if the item is exposed to the user’s different neighbors? To answer this question, we resort to causal inference and formalize PRSN as: (1) estimating the potential feedback of a user on an item, under the network interference by the item’s exposure to the user’s neighbors; and (2) adjusting the exposure of a target item to target users’ neighbors to trade-off steering performance and the damage to the neighbors’ experience. To this end, we propose a Neighbor Interference Recommendation (NIRec) framework with two modules: (1) an interference representation-based estimation module for modeling potential feedback; (2) a post-learning-based optimization module for adjusting a target item’s exposure to trade-off steering performance and the neighbors’ experience through greedy search. We conduct extensive semi-simulation experiments on real-world datasets, validating the steering effectiveness of NIRec. The code is available at https://github.com/HungPaan/NIRec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信