基于新对数函数的模糊神经网络的预定义时间聚类输出同步

IF 4.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Peng Liu , Ting Liu , Junwei Sun , Yanfeng Wang
{"title":"基于新对数函数的模糊神经网络的预定义时间聚类输出同步","authors":"Peng Liu ,&nbsp;Ting Liu ,&nbsp;Junwei Sun ,&nbsp;Yanfeng Wang","doi":"10.1016/j.jfranklin.2025.108065","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the predefined-time cluster output synchronization of fuzzy neural networks with state coupling. To achieve the predefined-time cluster output synchronization, an effective controller is developed by a new scaling function based on the logarithmic function, which is different from state-dependent sign function and time-dependent power functions or exponential functions in existing works. Moreover, based on the assumptions of the existence of strong connectivity or spanning trees within the communication topology, sufficient criteria are established for ensuring to achieve the predefined-time cluster output synchronization of fuzzy neural networks. In contrast to existing results, this paper extends the cluster synchronization constraints from strongly connected topologies to scenarios involving spanning trees. Finally, numerical examples are delivered to validate the obtained results.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 16","pages":"Article 108065"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predefined-time cluster output synchronization of fuzzy neural networks with a new logarithmic function\",\"authors\":\"Peng Liu ,&nbsp;Ting Liu ,&nbsp;Junwei Sun ,&nbsp;Yanfeng Wang\",\"doi\":\"10.1016/j.jfranklin.2025.108065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the predefined-time cluster output synchronization of fuzzy neural networks with state coupling. To achieve the predefined-time cluster output synchronization, an effective controller is developed by a new scaling function based on the logarithmic function, which is different from state-dependent sign function and time-dependent power functions or exponential functions in existing works. Moreover, based on the assumptions of the existence of strong connectivity or spanning trees within the communication topology, sufficient criteria are established for ensuring to achieve the predefined-time cluster output synchronization of fuzzy neural networks. In contrast to existing results, this paper extends the cluster synchronization constraints from strongly connected topologies to scenarios involving spanning trees. Finally, numerical examples are delivered to validate the obtained results.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"362 16\",\"pages\":\"Article 108065\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003225005575\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225005575","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有状态耦合的模糊神经网络的预定义时间簇输出同步问题。为实现预定义时间集群输出同步,不同于现有工作中依赖状态的符号函数和依赖时间的幂函数或指数函数,采用基于对数函数的标度函数设计了一种有效的控制器。此外,基于通信拓扑中存在强连通性或生成树的假设,建立了足够的准则来保证模糊神经网络实现预定义时间的聚类输出同步。与已有结果相比,本文将集群同步约束从强连接拓扑扩展到包含生成树的场景。最后,通过数值算例验证了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predefined-time cluster output synchronization of fuzzy neural networks with a new logarithmic function
This paper addresses the predefined-time cluster output synchronization of fuzzy neural networks with state coupling. To achieve the predefined-time cluster output synchronization, an effective controller is developed by a new scaling function based on the logarithmic function, which is different from state-dependent sign function and time-dependent power functions or exponential functions in existing works. Moreover, based on the assumptions of the existence of strong connectivity or spanning trees within the communication topology, sufficient criteria are established for ensuring to achieve the predefined-time cluster output synchronization of fuzzy neural networks. In contrast to existing results, this paper extends the cluster synchronization constraints from strongly connected topologies to scenarios involving spanning trees. Finally, numerical examples are delivered to validate the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信