半监督分类的异性感知动态超图

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shaojun Liang , Ying Zheng , Housheng Su , Lei Zhang , Yi Yang
{"title":"半监督分类的异性感知动态超图","authors":"Shaojun Liang ,&nbsp;Ying Zheng ,&nbsp;Housheng Su ,&nbsp;Lei Zhang ,&nbsp;Yi Yang","doi":"10.1016/j.knosys.2025.114435","DOIUrl":null,"url":null,"abstract":"<div><div>Hypergraph neural networks, as high-order graph neural networks, excel in handling intricate relationships within non-Euclidean infinite-dimensional spaces. However, conventional homophily assumption-based hypergraph methods exhibit limited effectiveness in semi-supervised classification scenarios involving heterophily problem, where neighboring nodes often belong to dissimilar categories. To address this challenge, this paper proposes a Heterophily-Aware Dynamic Hypergraph (HADHG) framework grounded in heterophily assumption through label domain analysis. The framework comprises three key components: a hypergraph-oriented label propagation method for deriving class-specific label features, a label tensor construction approach characterizing node-level heterophily intensity via 2D tensors, and a center attention mechanism that dynamically optimizes hypergraph structures. By enabling nodes to dynamically reconfigure the local graph structure based on microscopic heterophily intensity, HADHG effectively mitigates heterophily interference. Comprehensive experiments using real-flight data from Unmanned Aerial Vehicles and the public Gear dataset highlight the framework’s superiority over state-of-the-art methods. The codes and datasets are openly available at <span><span>https://github.com/DL-LEO/HADHG</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114435"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterophily-aware dynamic hypergraph for semi-supervised classification\",\"authors\":\"Shaojun Liang ,&nbsp;Ying Zheng ,&nbsp;Housheng Su ,&nbsp;Lei Zhang ,&nbsp;Yi Yang\",\"doi\":\"10.1016/j.knosys.2025.114435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hypergraph neural networks, as high-order graph neural networks, excel in handling intricate relationships within non-Euclidean infinite-dimensional spaces. However, conventional homophily assumption-based hypergraph methods exhibit limited effectiveness in semi-supervised classification scenarios involving heterophily problem, where neighboring nodes often belong to dissimilar categories. To address this challenge, this paper proposes a Heterophily-Aware Dynamic Hypergraph (HADHG) framework grounded in heterophily assumption through label domain analysis. The framework comprises three key components: a hypergraph-oriented label propagation method for deriving class-specific label features, a label tensor construction approach characterizing node-level heterophily intensity via 2D tensors, and a center attention mechanism that dynamically optimizes hypergraph structures. By enabling nodes to dynamically reconfigure the local graph structure based on microscopic heterophily intensity, HADHG effectively mitigates heterophily interference. Comprehensive experiments using real-flight data from Unmanned Aerial Vehicles and the public Gear dataset highlight the framework’s superiority over state-of-the-art methods. The codes and datasets are openly available at <span><span>https://github.com/DL-LEO/HADHG</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"330 \",\"pages\":\"Article 114435\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125014741\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125014741","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

超图神经网络作为高阶图神经网络,擅长处理非欧几里得无限维空间内的复杂关系。然而,传统的基于同态假设的超图方法在涉及异质性问题的半监督分类场景中表现出有限的有效性,其中相邻节点通常属于不同的类别。为了解决这一挑战,本文通过标签域分析提出了一个基于异构假设的动态超图(HADHG)框架。该框架包括三个关键组成部分:用于派生类特定标签特征的面向超图的标签传播方法,通过二维张量表征节点级异质性强度的标签张量构建方法,以及动态优化超图结构的中心注意机制。HADHG使节点能够基于微观异质性强度动态地重新配置局部图结构,有效地减轻了异质性干扰。使用来自无人机和公共齿轮数据集的真实飞行数据的综合实验突出了该框架相对于最先进方法的优势。代码和数据集可在https://github.com/DL-LEO/HADHG上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterophily-aware dynamic hypergraph for semi-supervised classification
Hypergraph neural networks, as high-order graph neural networks, excel in handling intricate relationships within non-Euclidean infinite-dimensional spaces. However, conventional homophily assumption-based hypergraph methods exhibit limited effectiveness in semi-supervised classification scenarios involving heterophily problem, where neighboring nodes often belong to dissimilar categories. To address this challenge, this paper proposes a Heterophily-Aware Dynamic Hypergraph (HADHG) framework grounded in heterophily assumption through label domain analysis. The framework comprises three key components: a hypergraph-oriented label propagation method for deriving class-specific label features, a label tensor construction approach characterizing node-level heterophily intensity via 2D tensors, and a center attention mechanism that dynamically optimizes hypergraph structures. By enabling nodes to dynamically reconfigure the local graph structure based on microscopic heterophily intensity, HADHG effectively mitigates heterophily interference. Comprehensive experiments using real-flight data from Unmanned Aerial Vehicles and the public Gear dataset highlight the framework’s superiority over state-of-the-art methods. The codes and datasets are openly available at https://github.com/DL-LEO/HADHG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信