利用实时数据增强外汇市场预测的特征增强多元LSTM模型

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Duong Thi Kim Chi , Ho Ngoc Trung Kien , Thanh Q. Nguyen
{"title":"利用实时数据增强外汇市场预测的特征增强多元LSTM模型","authors":"Duong Thi Kim Chi ,&nbsp;Ho Ngoc Trung Kien ,&nbsp;Thanh Q. Nguyen","doi":"10.1016/j.knosys.2025.114500","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a feature-augmented multivariate LSTM model for real-time Forex market forecasting. By incorporating engineered financial indicators—such as Close_Change, RSI, and gold price—alongside traditional OHLCV data, the model captures nonlinear temporal dynamics and macro-financial interactions. A sliding window approach structures input sequences for a stacked LSTM network optimized for short-term prediction. Experimental results on major currency pairs demonstrate that the proposed model outperforms baseline LSTM, GRU, and classical machine learning methods in RMSE, MAE, and MAPE metrics. Statistical validation using the Wilcoxon signed-rank test confirms the improvements are significant. The model's robustness under volatility stress and noisy inputs highlights its practical relevance for real-time decision-making. Potential extensions include incorporating news-based sentiment and multimodal signals to enhance adaptability.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114500"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing forex market forecasting with feature-augmented multivariate LSTM models using real-time data\",\"authors\":\"Duong Thi Kim Chi ,&nbsp;Ho Ngoc Trung Kien ,&nbsp;Thanh Q. Nguyen\",\"doi\":\"10.1016/j.knosys.2025.114500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a feature-augmented multivariate LSTM model for real-time Forex market forecasting. By incorporating engineered financial indicators—such as Close_Change, RSI, and gold price—alongside traditional OHLCV data, the model captures nonlinear temporal dynamics and macro-financial interactions. A sliding window approach structures input sequences for a stacked LSTM network optimized for short-term prediction. Experimental results on major currency pairs demonstrate that the proposed model outperforms baseline LSTM, GRU, and classical machine learning methods in RMSE, MAE, and MAPE metrics. Statistical validation using the Wilcoxon signed-rank test confirms the improvements are significant. The model's robustness under volatility stress and noisy inputs highlights its practical relevance for real-time decision-making. Potential extensions include incorporating news-based sentiment and multimodal signals to enhance adaptability.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"330 \",\"pages\":\"Article 114500\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125015394\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125015394","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种特征增强的多元LSTM模型用于实时外汇市场预测。通过将工程财务指标(如Close_Change、RSI和黄金价格)与传统OHLCV数据结合起来,该模型捕获了非线性时间动态和宏观金融相互作用。针对短期预测优化的堆叠LSTM网络,采用滑动窗口方法构造输入序列。在主要货币对上的实验结果表明,该模型在RMSE、MAE和MAPE指标上优于基准LSTM、GRU和经典机器学习方法。使用Wilcoxon符号秩检验的统计验证证实了改进是显著的。该模型在波动压力和噪声输入下的鲁棒性突出了其与实时决策的实际相关性。潜在的扩展包括纳入基于新闻的情感和多模态信号,以增强适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing forex market forecasting with feature-augmented multivariate LSTM models using real-time data
This study proposes a feature-augmented multivariate LSTM model for real-time Forex market forecasting. By incorporating engineered financial indicators—such as Close_Change, RSI, and gold price—alongside traditional OHLCV data, the model captures nonlinear temporal dynamics and macro-financial interactions. A sliding window approach structures input sequences for a stacked LSTM network optimized for short-term prediction. Experimental results on major currency pairs demonstrate that the proposed model outperforms baseline LSTM, GRU, and classical machine learning methods in RMSE, MAE, and MAPE metrics. Statistical validation using the Wilcoxon signed-rank test confirms the improvements are significant. The model's robustness under volatility stress and noisy inputs highlights its practical relevance for real-time decision-making. Potential extensions include incorporating news-based sentiment and multimodal signals to enhance adaptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信