学习通用和特定提示与多任务视觉场景理解的对比约束

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tianyu Han , Zhimin Xu , Wanying Li , Haohao Hu , Xinxin He , Song He , Peng Zan , Xiaochen Bo
{"title":"学习通用和特定提示与多任务视觉场景理解的对比约束","authors":"Tianyu Han ,&nbsp;Zhimin Xu ,&nbsp;Wanying Li ,&nbsp;Haohao Hu ,&nbsp;Xinxin He ,&nbsp;Song He ,&nbsp;Peng Zan ,&nbsp;Xiaochen Bo","doi":"10.1016/j.neucom.2025.131586","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-task learning has emerged as a crucial research direction in the field of computer vision, offering improved performance and efficiency across multiple tasks. Recent studies have incorporated prompt learning into multi-task learning to enhance the interaction between prompt vectors and image representations. However, these studies fail to consider the inter-task and intra-task relations of prompt vectors under multi-task scenarios. To address this issue, we propose learning Generic and Specific Prompts (GSPrompt) with contrastive constraints for multi-task visual scene understanding. Our approach assumes that each task possesses both commonality and individuality, leading us to design two distinct types of prompt vectors: task-generic prompts and task-specific prompts. By constraining the prompt vectors through pulling task-generic prompts and pushing task-specific prompts, we enable multi-task models to learn prompts capable of adapting to multiple tasks simultaneously. Extensive experiments on NYUD-v2, PASCAL-Context, and Cityscapes show that GSPrompt learns effective prompts and achieves state-of-the-art performance. The code is publicly available at <span><span>https://github.com/teeyohan/GSPrompt-main</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131586"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning generic and specific prompts with contrastive constraints for multi-task visual scene understanding\",\"authors\":\"Tianyu Han ,&nbsp;Zhimin Xu ,&nbsp;Wanying Li ,&nbsp;Haohao Hu ,&nbsp;Xinxin He ,&nbsp;Song He ,&nbsp;Peng Zan ,&nbsp;Xiaochen Bo\",\"doi\":\"10.1016/j.neucom.2025.131586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-task learning has emerged as a crucial research direction in the field of computer vision, offering improved performance and efficiency across multiple tasks. Recent studies have incorporated prompt learning into multi-task learning to enhance the interaction between prompt vectors and image representations. However, these studies fail to consider the inter-task and intra-task relations of prompt vectors under multi-task scenarios. To address this issue, we propose learning Generic and Specific Prompts (GSPrompt) with contrastive constraints for multi-task visual scene understanding. Our approach assumes that each task possesses both commonality and individuality, leading us to design two distinct types of prompt vectors: task-generic prompts and task-specific prompts. By constraining the prompt vectors through pulling task-generic prompts and pushing task-specific prompts, we enable multi-task models to learn prompts capable of adapting to multiple tasks simultaneously. Extensive experiments on NYUD-v2, PASCAL-Context, and Cityscapes show that GSPrompt learns effective prompts and achieves state-of-the-art performance. The code is publicly available at <span><span>https://github.com/teeyohan/GSPrompt-main</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"657 \",\"pages\":\"Article 131586\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225022581\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022581","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多任务学习已经成为计算机视觉领域的一个重要研究方向,它提供了跨多任务的性能和效率的提高。最近的研究将提示学习纳入多任务学习,以增强提示向量与图像表征之间的交互作用。然而,这些研究没有考虑多任务情景下提示向量的任务间和任务内关系。为了解决这个问题,我们提出了学习具有对比约束的通用和特定提示(GSPrompt)来进行多任务视觉场景理解。我们的方法假设每个任务都具有共性和个性,这导致我们设计了两种不同类型的提示向量:任务通用提示和任务特定提示。通过抽取任务通用提示和推送任务特定提示来约束提示向量,我们使多任务模型能够学习能够同时适应多个任务的提示。在NYUD-v2、PASCAL-Context和cityscape上的大量实验表明,GSPrompt学习了有效的提示并达到了最先进的性能。该代码可在https://github.com/teeyohan/GSPrompt-main上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning generic and specific prompts with contrastive constraints for multi-task visual scene understanding
Multi-task learning has emerged as a crucial research direction in the field of computer vision, offering improved performance and efficiency across multiple tasks. Recent studies have incorporated prompt learning into multi-task learning to enhance the interaction between prompt vectors and image representations. However, these studies fail to consider the inter-task and intra-task relations of prompt vectors under multi-task scenarios. To address this issue, we propose learning Generic and Specific Prompts (GSPrompt) with contrastive constraints for multi-task visual scene understanding. Our approach assumes that each task possesses both commonality and individuality, leading us to design two distinct types of prompt vectors: task-generic prompts and task-specific prompts. By constraining the prompt vectors through pulling task-generic prompts and pushing task-specific prompts, we enable multi-task models to learn prompts capable of adapting to multiple tasks simultaneously. Extensive experiments on NYUD-v2, PASCAL-Context, and Cityscapes show that GSPrompt learns effective prompts and achieves state-of-the-art performance. The code is publicly available at https://github.com/teeyohan/GSPrompt-main.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信