{"title":"流行病学模型的近似贝叶斯推断研究进展","authors":"Xiahui Li, Fergus Chadwick, Ben Swallow","doi":"10.1016/j.epidem.2025.100855","DOIUrl":null,"url":null,"abstract":"<div><div>Bayesian inference methods are useful in infectious diseases modeling due to their capability to propagate uncertainty, manage sparse data, incorporate latent structures, and address high-dimensional parameter spaces. However, parameter inference through assimilation of observational data in these models remains challenging. While asymptotically exact Bayesian methods offer theoretical guarantees for accurate inference, they can be computationally demanding and impractical for real-time outbreak analysis. This review synthesizes recent advances in approximate Bayesian inference methods that aim to balance inferential accuracy with scalability. We focus on four prominent families: Approximate Bayesian Computation, Bayesian Synthetic Likelihood, Integrated Nested Laplace Approximation, and Variational Inference. For each method, we evaluate its relevance to epidemiological applications, emphasizing innovations that improve both computational efficiency and inference accuracy. We also offer practical guidance on method selection across a range of modeling scenarios. Finally, we identify hybrid exact approximate inference as a promising frontier that combines methodological rigor with the scalability needed for the response to outbreaks. This review provides epidemiologists with a conceptual framework to navigate the trade-off between statistical accuracy and computational feasibility in contemporary disease modeling.</div></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"53 ","pages":"Article 100855"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in approximate Bayesian inference for models in epidemiology\",\"authors\":\"Xiahui Li, Fergus Chadwick, Ben Swallow\",\"doi\":\"10.1016/j.epidem.2025.100855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bayesian inference methods are useful in infectious diseases modeling due to their capability to propagate uncertainty, manage sparse data, incorporate latent structures, and address high-dimensional parameter spaces. However, parameter inference through assimilation of observational data in these models remains challenging. While asymptotically exact Bayesian methods offer theoretical guarantees for accurate inference, they can be computationally demanding and impractical for real-time outbreak analysis. This review synthesizes recent advances in approximate Bayesian inference methods that aim to balance inferential accuracy with scalability. We focus on four prominent families: Approximate Bayesian Computation, Bayesian Synthetic Likelihood, Integrated Nested Laplace Approximation, and Variational Inference. For each method, we evaluate its relevance to epidemiological applications, emphasizing innovations that improve both computational efficiency and inference accuracy. We also offer practical guidance on method selection across a range of modeling scenarios. Finally, we identify hybrid exact approximate inference as a promising frontier that combines methodological rigor with the scalability needed for the response to outbreaks. This review provides epidemiologists with a conceptual framework to navigate the trade-off between statistical accuracy and computational feasibility in contemporary disease modeling.</div></div>\",\"PeriodicalId\":49206,\"journal\":{\"name\":\"Epidemics\",\"volume\":\"53 \",\"pages\":\"Article 100855\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175543652500043X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175543652500043X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Advances in approximate Bayesian inference for models in epidemiology
Bayesian inference methods are useful in infectious diseases modeling due to their capability to propagate uncertainty, manage sparse data, incorporate latent structures, and address high-dimensional parameter spaces. However, parameter inference through assimilation of observational data in these models remains challenging. While asymptotically exact Bayesian methods offer theoretical guarantees for accurate inference, they can be computationally demanding and impractical for real-time outbreak analysis. This review synthesizes recent advances in approximate Bayesian inference methods that aim to balance inferential accuracy with scalability. We focus on four prominent families: Approximate Bayesian Computation, Bayesian Synthetic Likelihood, Integrated Nested Laplace Approximation, and Variational Inference. For each method, we evaluate its relevance to epidemiological applications, emphasizing innovations that improve both computational efficiency and inference accuracy. We also offer practical guidance on method selection across a range of modeling scenarios. Finally, we identify hybrid exact approximate inference as a promising frontier that combines methodological rigor with the scalability needed for the response to outbreaks. This review provides epidemiologists with a conceptual framework to navigate the trade-off between statistical accuracy and computational feasibility in contemporary disease modeling.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.