Viola Rädle , Tilman Hartwig , Benjamin Oesen , Emily Alice Kröger , Julius Vogt , Eike Gericke , Martin Baron
{"title":"GAMMA_FLOW:基于矩阵分解的轻量级操作工作流多标签谱的导向分析","authors":"Viola Rädle , Tilman Hartwig , Benjamin Oesen , Emily Alice Kröger , Julius Vogt , Eike Gericke , Martin Baron","doi":"10.1016/j.softx.2025.102342","DOIUrl":null,"url":null,"abstract":"<div><div><span>gamma_flow</span> is an open-source Python package for real-time analysis of spectral data. It supports classification, denoising, decomposition, and outlier detection of both single- and multi-component spectra. Instead of relying on large, computationally intensive models, it employs a supervised approach to non-negative matrix factorization (NMF) for dimensionality reduction. This ensures a fast, efficient, and adaptable analysis while reducing computational costs. <span>gamma_flow</span> achieves classification accuracies above 90% and enables reliable automated spectral interpretation. Originally developed for gamma-ray spectra, it is applicable to any type of one-dimensional spectral data. As an open and flexible alternative to proprietary software, it supports various applications in research and industry.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"32 ","pages":"Article 102342"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAMMA_FLOW: Guided Analysis of Multi-label spectra by Matrix Factorization for Lightweight Operational Workflows\",\"authors\":\"Viola Rädle , Tilman Hartwig , Benjamin Oesen , Emily Alice Kröger , Julius Vogt , Eike Gericke , Martin Baron\",\"doi\":\"10.1016/j.softx.2025.102342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>gamma_flow</span> is an open-source Python package for real-time analysis of spectral data. It supports classification, denoising, decomposition, and outlier detection of both single- and multi-component spectra. Instead of relying on large, computationally intensive models, it employs a supervised approach to non-negative matrix factorization (NMF) for dimensionality reduction. This ensures a fast, efficient, and adaptable analysis while reducing computational costs. <span>gamma_flow</span> achieves classification accuracies above 90% and enables reliable automated spectral interpretation. Originally developed for gamma-ray spectra, it is applicable to any type of one-dimensional spectral data. As an open and flexible alternative to proprietary software, it supports various applications in research and industry.</div></div>\",\"PeriodicalId\":21905,\"journal\":{\"name\":\"SoftwareX\",\"volume\":\"32 \",\"pages\":\"Article 102342\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SoftwareX\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352711025003085\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711025003085","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
GAMMA_FLOW: Guided Analysis of Multi-label spectra by Matrix Factorization for Lightweight Operational Workflows
gamma_flow is an open-source Python package for real-time analysis of spectral data. It supports classification, denoising, decomposition, and outlier detection of both single- and multi-component spectra. Instead of relying on large, computationally intensive models, it employs a supervised approach to non-negative matrix factorization (NMF) for dimensionality reduction. This ensures a fast, efficient, and adaptable analysis while reducing computational costs. gamma_flow achieves classification accuracies above 90% and enables reliable automated spectral interpretation. Originally developed for gamma-ray spectra, it is applicable to any type of one-dimensional spectral data. As an open and flexible alternative to proprietary software, it supports various applications in research and industry.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.