超对称Shimura算子的特征值与插值多项式

IF 1.5 1区 数学 Q1 MATHEMATICS
Siddhartha Sahi , Songhao Zhu
{"title":"超对称Shimura算子的特征值与插值多项式","authors":"Siddhartha Sahi ,&nbsp;Songhao Zhu","doi":"10.1016/j.aim.2025.110547","DOIUrl":null,"url":null,"abstract":"<div><div>The Shimura operators are a certain distinguished basis for invariant differential operators on a Hermitian symmetric space. Answering a question of Shimura, Sahi and Zhang showed that the Harish-Chandra images of these operators are specializations of certain <em>BC</em>-symmetric interpolation polynomials that were defined by Okounkov.</div><div>We consider the analogs of Shimura operators for the Hermitian symmetric superpair <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> where <span><math><mi>g</mi><mo>=</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mn>2</mn><mi>p</mi><mo>|</mo><mn>2</mn><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>k</mi><mo>=</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>p</mi><mo>|</mo><mi>q</mi><mo>)</mo><mo>⊕</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>p</mi><mo>|</mo><mi>q</mi><mo>)</mo></math></span> and we prove their Harish-Chandra images are specializations of certain <em>BC</em>-supersymmetric interpolation polynomials introduced by Sergeev and Veselov.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110547"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenvalues of supersymmetric Shimura operators and interpolation polynomials\",\"authors\":\"Siddhartha Sahi ,&nbsp;Songhao Zhu\",\"doi\":\"10.1016/j.aim.2025.110547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Shimura operators are a certain distinguished basis for invariant differential operators on a Hermitian symmetric space. Answering a question of Shimura, Sahi and Zhang showed that the Harish-Chandra images of these operators are specializations of certain <em>BC</em>-symmetric interpolation polynomials that were defined by Okounkov.</div><div>We consider the analogs of Shimura operators for the Hermitian symmetric superpair <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> where <span><math><mi>g</mi><mo>=</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mn>2</mn><mi>p</mi><mo>|</mo><mn>2</mn><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>k</mi><mo>=</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>p</mi><mo>|</mo><mi>q</mi><mo>)</mo><mo>⊕</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>p</mi><mo>|</mo><mi>q</mi><mo>)</mo></math></span> and we prove their Harish-Chandra images are specializations of certain <em>BC</em>-supersymmetric interpolation polynomials introduced by Sergeev and Veselov.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110547\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004451\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004451","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Shimura算子是厄密对称空间上不变微分算子的一组可分辨基。在回答Shimura的问题时,Sahi和Zhang证明了这些算子的Harish-Chandra像是Okounkov定义的某些bc对称插值多项式的专一化。我们考虑了格=gl(2p|2q)和k=gl(p|q)⊕gl(p|q)的赫米对称超对(g,k)的Shimura算子的类似物,并证明了它们的harsh - chandra象是由Sergeev和Veselov引入的某些bc -超对称插值多项式的专一化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvalues of supersymmetric Shimura operators and interpolation polynomials
The Shimura operators are a certain distinguished basis for invariant differential operators on a Hermitian symmetric space. Answering a question of Shimura, Sahi and Zhang showed that the Harish-Chandra images of these operators are specializations of certain BC-symmetric interpolation polynomials that were defined by Okounkov.
We consider the analogs of Shimura operators for the Hermitian symmetric superpair (g,k) where g=gl(2p|2q) and k=gl(p|q)gl(p|q) and we prove their Harish-Chandra images are specializations of certain BC-supersymmetric interpolation polynomials introduced by Sergeev and Veselov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信