Rademacher-type和Sobolev-to-Lipschitz性质的持久性

IF 1.5 1区 数学 Q1 MATHEMATICS
Lorenzo Dello Schiavo , Kohei Suzuki
{"title":"Rademacher-type和Sobolev-to-Lipschitz性质的持久性","authors":"Lorenzo Dello Schiavo ,&nbsp;Kohei Suzuki","doi":"10.1016/j.aim.2025.110542","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Rademacher- and Sobolev-to-Lipschitz-type properties for arbitrary quasi-regular strongly local Dirichlet spaces. We discuss the persistence of these properties under localization, globalization, transfer to weighted spaces, tensorization, and direct integration. As byproducts, we obtain: necessary and sufficient conditions to identify a quasi-regular strongly local Dirichlet form on an extended metric topological <em>σ</em>-finite possibly non-Radon measure space with the Cheeger energy of the space; the tensorization of intrinsic distances; the tensorization of the Varadhan short-time asymptotics.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110542"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Persistence of Rademacher-type and Sobolev-to-Lipschitz properties\",\"authors\":\"Lorenzo Dello Schiavo ,&nbsp;Kohei Suzuki\",\"doi\":\"10.1016/j.aim.2025.110542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the Rademacher- and Sobolev-to-Lipschitz-type properties for arbitrary quasi-regular strongly local Dirichlet spaces. We discuss the persistence of these properties under localization, globalization, transfer to weighted spaces, tensorization, and direct integration. As byproducts, we obtain: necessary and sufficient conditions to identify a quasi-regular strongly local Dirichlet form on an extended metric topological <em>σ</em>-finite possibly non-Radon measure space with the Cheeger energy of the space; the tensorization of intrinsic distances; the tensorization of the Varadhan short-time asymptotics.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110542\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004402\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004402","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了任意拟正则强局部Dirichlet空间的Rademacher-和sobolev -to- lipschitz -型性质。我们讨论了这些性质在局部化、全球化、转移到加权空间、张紧化和直接积分下的持久性。作为副产物,我们得到了利用Cheeger能量在扩展度量拓扑σ-有限可能非radon测度空间上识别拟正则强局部Dirichlet形式的充分必要条件;内禀距离的张张化;Varadhan短时渐近的张紧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistence of Rademacher-type and Sobolev-to-Lipschitz properties
We consider the Rademacher- and Sobolev-to-Lipschitz-type properties for arbitrary quasi-regular strongly local Dirichlet spaces. We discuss the persistence of these properties under localization, globalization, transfer to weighted spaces, tensorization, and direct integration. As byproducts, we obtain: necessary and sufficient conditions to identify a quasi-regular strongly local Dirichlet form on an extended metric topological σ-finite possibly non-Radon measure space with the Cheeger energy of the space; the tensorization of intrinsic distances; the tensorization of the Varadhan short-time asymptotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信