具有有界旋转数的解析光滑双三次多临界圆映射的刚性

IF 1.5 1区 数学 Q1 MATHEMATICS
Igors Gorbovickis , Michael Yampolsky
{"title":"具有有界旋转数的解析光滑双三次多临界圆映射的刚性","authors":"Igors Gorbovickis ,&nbsp;Michael Yampolsky","doi":"10.1016/j.aim.2025.110541","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that if two analytic multicritical circle maps with the same bounded type rotation number are topologically conjugate by a conjugacy which matches the critical points of the two maps while preserving the orders of their criticalities, then the conjugacy necessarily has <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow></msup></math></span> regularity, where <em>α</em> depends only on the bound on the type of the rotation number. We then extend this rigidity result to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>-smooth bi-cubic circle maps.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110541"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of analytic and smooth bi-cubic multicritical circle maps with bounded type rotation numbers\",\"authors\":\"Igors Gorbovickis ,&nbsp;Michael Yampolsky\",\"doi\":\"10.1016/j.aim.2025.110541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that if two analytic multicritical circle maps with the same bounded type rotation number are topologically conjugate by a conjugacy which matches the critical points of the two maps while preserving the orders of their criticalities, then the conjugacy necessarily has <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow></msup></math></span> regularity, where <em>α</em> depends only on the bound on the type of the rotation number. We then extend this rigidity result to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>-smooth bi-cubic circle maps.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110541\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004396\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004396","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了如果具有相同有界型旋转数的两个解析多临界圆映射是由一个匹配两个映射的临界点且保持其临界阶数的共轭拓扑共轭的,则该共轭必然具有C1+α正则性,其中α仅依赖于旋转数类型的界。然后我们将这个刚性结果推广到c3 -光滑双三次圆映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of analytic and smooth bi-cubic multicritical circle maps with bounded type rotation numbers
We prove that if two analytic multicritical circle maps with the same bounded type rotation number are topologically conjugate by a conjugacy which matches the critical points of the two maps while preserving the orders of their criticalities, then the conjugacy necessarily has C1+α regularity, where α depends only on the bound on the type of the rotation number. We then extend this rigidity result to C3-smooth bi-cubic circle maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信