Zr2B作为多价(Li, Na, K, Mg, Ca)离子电池通用电极的理论设计

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Ming-Liang Qin , Cheng-Wei Lv , Yu-Pu He, Shao-Yi Wu, Qin-Sheng Zhu
{"title":"Zr2B作为多价(Li, Na, K, Mg, Ca)离子电池通用电极的理论设计","authors":"Ming-Liang Qin ,&nbsp;Cheng-Wei Lv ,&nbsp;Yu-Pu He,&nbsp;Shao-Yi Wu,&nbsp;Qin-Sheng Zhu","doi":"10.1016/j.physe.2025.116375","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable metal-ion batteries demand advanced anode materials that simultaneously offer high storage capacity, rapid ion transport, and structural robustness. This study conducts first-principles computation using density functional theory (DFT) to systematically estimate the promising of a two-dimensional (2D) Zr<sub>2</sub>B monolayer as an anode material for Li, Na, K, Mg and Ca-ion batteries (LIBs, NIBs, KIBs, MIBs and CIBs). The results indicate that Zr<sub>2</sub>B exhibits outstanding mechanical integrity, thermal and kinetic stability, and metallic conductivity favorable for efficient electron transport. Remarkably, the migration barriers of alkali metal ions (Li, Na, and K) on the Zr<sub>2</sub>B surface are exceptionally low. Particularly, Na presents a barrier of only 6 meV, remarkably smaller than the reported values for most MXenes. In addition, the open-circuit voltages (OCV) values for Li, Na, and K remain well-aligned with the ideal voltage window (0.1–1.0 V), enabling high energy density and mitigating dendrite risks. The results suggest that Zr<sub>2</sub>B is a strong contender for use in advanced MXene-based anodes and provide valuable implications for future electrode development.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116375"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical design of Zr2B as a universal electrode for multivalent (Li, Na, K, Mg, Ca) ion batteries\",\"authors\":\"Ming-Liang Qin ,&nbsp;Cheng-Wei Lv ,&nbsp;Yu-Pu He,&nbsp;Shao-Yi Wu,&nbsp;Qin-Sheng Zhu\",\"doi\":\"10.1016/j.physe.2025.116375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rechargeable metal-ion batteries demand advanced anode materials that simultaneously offer high storage capacity, rapid ion transport, and structural robustness. This study conducts first-principles computation using density functional theory (DFT) to systematically estimate the promising of a two-dimensional (2D) Zr<sub>2</sub>B monolayer as an anode material for Li, Na, K, Mg and Ca-ion batteries (LIBs, NIBs, KIBs, MIBs and CIBs). The results indicate that Zr<sub>2</sub>B exhibits outstanding mechanical integrity, thermal and kinetic stability, and metallic conductivity favorable for efficient electron transport. Remarkably, the migration barriers of alkali metal ions (Li, Na, and K) on the Zr<sub>2</sub>B surface are exceptionally low. Particularly, Na presents a barrier of only 6 meV, remarkably smaller than the reported values for most MXenes. In addition, the open-circuit voltages (OCV) values for Li, Na, and K remain well-aligned with the ideal voltage window (0.1–1.0 V), enabling high energy density and mitigating dendrite risks. The results suggest that Zr<sub>2</sub>B is a strong contender for use in advanced MXene-based anodes and provide valuable implications for future electrode development.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"175 \",\"pages\":\"Article 116375\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138694772500205X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138694772500205X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

可充电金属离子电池需要先进的负极材料,同时提供高存储容量、快速离子传输和结构坚固性。本研究利用密度泛函理论(DFT)进行第一性原理计算,系统地估计了二维(2D) Zr2B单层作为Li, Na, K, Mg和ca离子电池(LIBs, NIBs, KIBs, MIBs和CIBs)阳极材料的前景。结果表明,Zr2B具有优异的机械完整性、热稳定性和动力学稳定性,以及有利于电子高效传递的金属导电性。值得注意的是,碱金属离子(Li, Na和K)在Zr2B表面的迁移障碍非常低。特别是,Na的势垒仅为6 meV,明显小于大多数MXenes的报道值。此外,Li、Na和K的开路电压(OCV)值与理想电压窗(0.1-1.0 V)保持良好对齐,从而实现高能量密度并减轻枝晶风险。结果表明,Zr2B是先进的mxene基阳极的有力竞争者,并为未来电极的发展提供了有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical design of Zr2B as a universal electrode for multivalent (Li, Na, K, Mg, Ca) ion batteries
Rechargeable metal-ion batteries demand advanced anode materials that simultaneously offer high storage capacity, rapid ion transport, and structural robustness. This study conducts first-principles computation using density functional theory (DFT) to systematically estimate the promising of a two-dimensional (2D) Zr2B monolayer as an anode material for Li, Na, K, Mg and Ca-ion batteries (LIBs, NIBs, KIBs, MIBs and CIBs). The results indicate that Zr2B exhibits outstanding mechanical integrity, thermal and kinetic stability, and metallic conductivity favorable for efficient electron transport. Remarkably, the migration barriers of alkali metal ions (Li, Na, and K) on the Zr2B surface are exceptionally low. Particularly, Na presents a barrier of only 6 meV, remarkably smaller than the reported values for most MXenes. In addition, the open-circuit voltages (OCV) values for Li, Na, and K remain well-aligned with the ideal voltage window (0.1–1.0 V), enabling high energy density and mitigating dendrite risks. The results suggest that Zr2B is a strong contender for use in advanced MXene-based anodes and provide valuable implications for future electrode development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信