MoO3/ ti3c2负载的ZnFe2O4光催化剂通过太阳能驱动水裂解制氢

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yakubu Mohammed , Hafeez Yusuf Hafeez , Khairia Mohammed Al-Ahmary , Jawza Sh Alnawmasi , Zahrah Alqahtani , Saedah R. Al-Mhyawi , Sarah Bader Alotaibi , J. Mohammed , Chifu Ebenezer Ndikilar
{"title":"MoO3/ ti3c2负载的ZnFe2O4光催化剂通过太阳能驱动水裂解制氢","authors":"Yakubu Mohammed ,&nbsp;Hafeez Yusuf Hafeez ,&nbsp;Khairia Mohammed Al-Ahmary ,&nbsp;Jawza Sh Alnawmasi ,&nbsp;Zahrah Alqahtani ,&nbsp;Saedah R. Al-Mhyawi ,&nbsp;Sarah Bader Alotaibi ,&nbsp;J. Mohammed ,&nbsp;Chifu Ebenezer Ndikilar","doi":"10.1016/j.matchemphys.2025.131551","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient photocatalysts for photocatalytic hydrogen evolution is essential for advancing to a reliable and sustainable source of environmentally friendly energy. In this quest, ZnFe<sub>2</sub>O<sub>4</sub> is an important photocatalyst for applications in solar energy conversion due to its visible light-sensitive bandgap, appropriate energy bands, photochemical and thermal stability, and magnetic retrievability. However, its hydrogen evolution rate is limited due to poor electron conductivity and particle agglomeration. Herein, we prepared a composite of ZnFe<sub>2</sub>O<sub>4</sub>, MoO<sub>3</sub> and Ti<sub>3</sub>C<sub>2</sub> via the ultrasonication-assisted wet impregnation method. The crystal structure, morphology, and optoelectronic properties of the composite were analysed. The optimized composite displayed exceptional photocatalytic performance, achieving a peak H<sub>2</sub> evolution rate of 30,129 μmolg<sup>−1</sup>h<sup>−1</sup> under solar light exposure with methanol as a sacrificial agent, a 286-fold enhancement over pristine ZnFe<sub>2</sub>O<sub>4</sub>. This notable enhancement in photoactivity is attributed to the reduction in bandgap energy from 2.00 to 1.77 eV and the introduction of MoO<sub>3</sub> and Ti<sub>3</sub>C<sub>2</sub> which led to significant photoluminescence quenching, promoting separation and transfer of charge carriers, thereby boosting the photocatalytic performance of ZnFe<sub>2</sub>O<sub>4</sub>. MoO<sub>3</sub> helped limit ZnFe<sub>2</sub>O<sub>4</sub> agglomeration, while Ti<sub>3</sub>C<sub>2</sub> facilitated electron transfer and suppressed charge recombination. The optimized photocatalyst also demonstrated outstanding stability, maintaining 99 % of its activity after 16 h and 4 consecutive cycles. This study provides new insights into the design of nanocomposites, demonstrating a hydrogen evolution rate that is significantly higher than those reported in previous studies on ZnFe<sub>2</sub>O<sub>4</sub>-based photocatalysts.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"348 ","pages":"Article 131551"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic hydrogen production via solar-driven water splitting using MoO3/Ti3C2-supported ZnFe2O4 photocatalyst\",\"authors\":\"Yakubu Mohammed ,&nbsp;Hafeez Yusuf Hafeez ,&nbsp;Khairia Mohammed Al-Ahmary ,&nbsp;Jawza Sh Alnawmasi ,&nbsp;Zahrah Alqahtani ,&nbsp;Saedah R. Al-Mhyawi ,&nbsp;Sarah Bader Alotaibi ,&nbsp;J. Mohammed ,&nbsp;Chifu Ebenezer Ndikilar\",\"doi\":\"10.1016/j.matchemphys.2025.131551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of efficient photocatalysts for photocatalytic hydrogen evolution is essential for advancing to a reliable and sustainable source of environmentally friendly energy. In this quest, ZnFe<sub>2</sub>O<sub>4</sub> is an important photocatalyst for applications in solar energy conversion due to its visible light-sensitive bandgap, appropriate energy bands, photochemical and thermal stability, and magnetic retrievability. However, its hydrogen evolution rate is limited due to poor electron conductivity and particle agglomeration. Herein, we prepared a composite of ZnFe<sub>2</sub>O<sub>4</sub>, MoO<sub>3</sub> and Ti<sub>3</sub>C<sub>2</sub> via the ultrasonication-assisted wet impregnation method. The crystal structure, morphology, and optoelectronic properties of the composite were analysed. The optimized composite displayed exceptional photocatalytic performance, achieving a peak H<sub>2</sub> evolution rate of 30,129 μmolg<sup>−1</sup>h<sup>−1</sup> under solar light exposure with methanol as a sacrificial agent, a 286-fold enhancement over pristine ZnFe<sub>2</sub>O<sub>4</sub>. This notable enhancement in photoactivity is attributed to the reduction in bandgap energy from 2.00 to 1.77 eV and the introduction of MoO<sub>3</sub> and Ti<sub>3</sub>C<sub>2</sub> which led to significant photoluminescence quenching, promoting separation and transfer of charge carriers, thereby boosting the photocatalytic performance of ZnFe<sub>2</sub>O<sub>4</sub>. MoO<sub>3</sub> helped limit ZnFe<sub>2</sub>O<sub>4</sub> agglomeration, while Ti<sub>3</sub>C<sub>2</sub> facilitated electron transfer and suppressed charge recombination. The optimized photocatalyst also demonstrated outstanding stability, maintaining 99 % of its activity after 16 h and 4 consecutive cycles. This study provides new insights into the design of nanocomposites, demonstrating a hydrogen evolution rate that is significantly higher than those reported in previous studies on ZnFe<sub>2</sub>O<sub>4</sub>-based photocatalysts.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"348 \",\"pages\":\"Article 131551\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058425011976\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425011976","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效的光催化析氢催化剂是实现可靠、可持续的环境友好型能源的必要条件。在这项研究中,由于ZnFe2O4具有可见光敏感带隙、合适的能带、光化学和热稳定性以及磁回收性,因此它是一种重要的光催化剂,用于太阳能转换。然而,由于电子导电性差和颗粒团聚性差,其析氢速率受到限制。本文采用超声辅助湿浸渍法制备了ZnFe2O4、MoO3和Ti3C2的复合材料。分析了复合材料的晶体结构、形貌和光电性能。优化后的复合材料表现出优异的光催化性能,以甲醇为牺牲剂,在太阳光下H2的析出速率达到30,129 μmolg−1h−1,比原始ZnFe2O4提高了286倍。这种光活性的显著增强是由于带隙能量从2.00 eV降低到1.77 eV, MoO3和Ti3C2的引入导致了明显的光致发光猝灭,促进了载流子的分离和转移,从而提高了ZnFe2O4的光催化性能。MoO3有助于限制ZnFe2O4团聚,而Ti3C2有利于电子转移和抑制电荷复合。优化后的光催化剂也表现出了出色的稳定性,在16小时和连续4次循环后,其活性保持在99%。该研究为纳米复合材料的设计提供了新的见解,表明其析氢速率明显高于先前基于znfe2o4的光催化剂的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photocatalytic hydrogen production via solar-driven water splitting using MoO3/Ti3C2-supported ZnFe2O4 photocatalyst

Photocatalytic hydrogen production via solar-driven water splitting using MoO3/Ti3C2-supported ZnFe2O4 photocatalyst
The development of efficient photocatalysts for photocatalytic hydrogen evolution is essential for advancing to a reliable and sustainable source of environmentally friendly energy. In this quest, ZnFe2O4 is an important photocatalyst for applications in solar energy conversion due to its visible light-sensitive bandgap, appropriate energy bands, photochemical and thermal stability, and magnetic retrievability. However, its hydrogen evolution rate is limited due to poor electron conductivity and particle agglomeration. Herein, we prepared a composite of ZnFe2O4, MoO3 and Ti3C2 via the ultrasonication-assisted wet impregnation method. The crystal structure, morphology, and optoelectronic properties of the composite were analysed. The optimized composite displayed exceptional photocatalytic performance, achieving a peak H2 evolution rate of 30,129 μmolg−1h−1 under solar light exposure with methanol as a sacrificial agent, a 286-fold enhancement over pristine ZnFe2O4. This notable enhancement in photoactivity is attributed to the reduction in bandgap energy from 2.00 to 1.77 eV and the introduction of MoO3 and Ti3C2 which led to significant photoluminescence quenching, promoting separation and transfer of charge carriers, thereby boosting the photocatalytic performance of ZnFe2O4. MoO3 helped limit ZnFe2O4 agglomeration, while Ti3C2 facilitated electron transfer and suppressed charge recombination. The optimized photocatalyst also demonstrated outstanding stability, maintaining 99 % of its activity after 16 h and 4 consecutive cycles. This study provides new insights into the design of nanocomposites, demonstrating a hydrogen evolution rate that is significantly higher than those reported in previous studies on ZnFe2O4-based photocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信