通过纳米级成分调制增强强化

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Manish Jain , Paul G. Kotula , Kyle Dorman , Saaketh Desai , Sadhvikas Addamane , David P. Adams , Frank W. DelRio , Remi Dingreville , Brad L. Boyce
{"title":"通过纳米级成分调制增强强化","authors":"Manish Jain ,&nbsp;Paul G. Kotula ,&nbsp;Kyle Dorman ,&nbsp;Saaketh Desai ,&nbsp;Sadhvikas Addamane ,&nbsp;David P. Adams ,&nbsp;Frank W. DelRio ,&nbsp;Remi Dingreville ,&nbsp;Brad L. Boyce","doi":"10.1016/j.scriptamat.2025.116999","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the origins of strengthening in nanocrystalline Pt-Au thin films. Drawing from a previous high-throughput combinatorial survey of 784 candidate films, five distinct films were selected for detailed analysis. Microstructural characterization using transmission electron microscopy, energy-dispersive X-ray spectroscopy, x-ray diffraction, x-ray reflectivity, and automated crystal orientation mapping was used to quantify contributions from grain size, solute content, texture, density, and dislocation content. In addition to those sources, the highest hardness film benefited from nanoscale composition modulations, outperforming comparable Pt-Au alloys that lacked composition modulation. The modulations are akin to spinodal decomposition microstructures, though distinct in their formation mechanism. This work provides a forensic analysis of how subtle, nanoscale chemical features, identified through combinatorial exploration and subsequent detailed analysis, can influence the mechanical properties of alloy systems.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"271 ","pages":"Article 116999"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced strengthening via nanoscale composition modulation\",\"authors\":\"Manish Jain ,&nbsp;Paul G. Kotula ,&nbsp;Kyle Dorman ,&nbsp;Saaketh Desai ,&nbsp;Sadhvikas Addamane ,&nbsp;David P. Adams ,&nbsp;Frank W. DelRio ,&nbsp;Remi Dingreville ,&nbsp;Brad L. Boyce\",\"doi\":\"10.1016/j.scriptamat.2025.116999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates the origins of strengthening in nanocrystalline Pt-Au thin films. Drawing from a previous high-throughput combinatorial survey of 784 candidate films, five distinct films were selected for detailed analysis. Microstructural characterization using transmission electron microscopy, energy-dispersive X-ray spectroscopy, x-ray diffraction, x-ray reflectivity, and automated crystal orientation mapping was used to quantify contributions from grain size, solute content, texture, density, and dislocation content. In addition to those sources, the highest hardness film benefited from nanoscale composition modulations, outperforming comparable Pt-Au alloys that lacked composition modulation. The modulations are akin to spinodal decomposition microstructures, though distinct in their formation mechanism. This work provides a forensic analysis of how subtle, nanoscale chemical features, identified through combinatorial exploration and subsequent detailed analysis, can influence the mechanical properties of alloy systems.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"271 \",\"pages\":\"Article 116999\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225004610\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225004610","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了纳米晶Pt-Au薄膜强化的起源。根据之前对784部候选电影的高通量组合调查,选择了5部不同的电影进行详细分析。显微结构表征采用透射电子显微镜、能量色散x射线光谱、x射线衍射、x射线反射率和自动晶体取向图来量化晶粒尺寸、溶质含量、织构、密度和位错含量的贡献。除了这些来源外,最高硬度薄膜受益于纳米级成分调制,优于缺乏成分调制的同类Pt-Au合金。调制是类似于spinodal分解微观结构,虽然在其形成机制不同。这项工作为通过组合探索和随后的详细分析确定的微妙的纳米级化学特征如何影响合金系统的机械性能提供了法医分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced strengthening via nanoscale composition modulation

Enhanced strengthening via nanoscale composition modulation
This work investigates the origins of strengthening in nanocrystalline Pt-Au thin films. Drawing from a previous high-throughput combinatorial survey of 784 candidate films, five distinct films were selected for detailed analysis. Microstructural characterization using transmission electron microscopy, energy-dispersive X-ray spectroscopy, x-ray diffraction, x-ray reflectivity, and automated crystal orientation mapping was used to quantify contributions from grain size, solute content, texture, density, and dislocation content. In addition to those sources, the highest hardness film benefited from nanoscale composition modulations, outperforming comparable Pt-Au alloys that lacked composition modulation. The modulations are akin to spinodal decomposition microstructures, though distinct in their formation mechanism. This work provides a forensic analysis of how subtle, nanoscale chemical features, identified through combinatorial exploration and subsequent detailed analysis, can influence the mechanical properties of alloy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信