{"title":"单协变量泊松回归中基于d准则的最优子抽样","authors":"Torsten Glemser, Rainer Schwabe","doi":"10.1016/j.jspi.2025.106340","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of subsampling is to select an informative subset of all observations, when using the full data for statistical analysis is not viable. We construct locally <span><math><mi>D</mi></math></span>-optimal subsampling designs under a Poisson regression model with a log link in one covariate. A representation of the support of locally <span><math><mi>D</mi></math></span>-optimal subsampling designs is established. We make statements on scale-location transformations of the covariate that require a simultaneous transformation of the regression parameter. The performance of the methods is demonstrated by illustrating examples. To show the advantage of the optimal subsampling designs, we examine the efficiency of uniform random subsampling as well as of two heuristic designs. Further, the efficiency of locally <span><math><mi>D</mi></math></span>-optimal subsampling designs is studied when the parameter is misspecified.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"242 ","pages":"Article 106340"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D-criterion based optimal subsampling in Poisson regression with one covariate\",\"authors\":\"Torsten Glemser, Rainer Schwabe\",\"doi\":\"10.1016/j.jspi.2025.106340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The goal of subsampling is to select an informative subset of all observations, when using the full data for statistical analysis is not viable. We construct locally <span><math><mi>D</mi></math></span>-optimal subsampling designs under a Poisson regression model with a log link in one covariate. A representation of the support of locally <span><math><mi>D</mi></math></span>-optimal subsampling designs is established. We make statements on scale-location transformations of the covariate that require a simultaneous transformation of the regression parameter. The performance of the methods is demonstrated by illustrating examples. To show the advantage of the optimal subsampling designs, we examine the efficiency of uniform random subsampling as well as of two heuristic designs. Further, the efficiency of locally <span><math><mi>D</mi></math></span>-optimal subsampling designs is studied when the parameter is misspecified.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"242 \",\"pages\":\"Article 106340\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000783\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000783","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
D-criterion based optimal subsampling in Poisson regression with one covariate
The goal of subsampling is to select an informative subset of all observations, when using the full data for statistical analysis is not viable. We construct locally -optimal subsampling designs under a Poisson regression model with a log link in one covariate. A representation of the support of locally -optimal subsampling designs is established. We make statements on scale-location transformations of the covariate that require a simultaneous transformation of the regression parameter. The performance of the methods is demonstrated by illustrating examples. To show the advantage of the optimal subsampling designs, we examine the efficiency of uniform random subsampling as well as of two heuristic designs. Further, the efficiency of locally -optimal subsampling designs is studied when the parameter is misspecified.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.