卡布拉蒙场和完美流体暗物质对黑洞阴影和引力透镜的影响

IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Bakhodir Shodikulov , Mirjavokhir Mirov , Farruh Atamurotov , Sushant G. Ghosh , Ahmadjon Abdujabbarov
{"title":"卡布拉蒙场和完美流体暗物质对黑洞阴影和引力透镜的影响","authors":"Bakhodir Shodikulov ,&nbsp;Mirjavokhir Mirov ,&nbsp;Farruh Atamurotov ,&nbsp;Sushant G. Ghosh ,&nbsp;Ahmadjon Abdujabbarov","doi":"10.1016/j.dark.2025.102096","DOIUrl":null,"url":null,"abstract":"<div><div>We study the shadow and gravitational lensing features of static, spherically symmetric black holes in the presence of a Kalb–Ramond (KR) field and perfect fluid dark matter (PFDM). The KR field, derived from string theory, has a Lorentz-violating parameter <span><math><mi>a</mi></math></span>, whereas PFDM is defined by the density parameter <span><math><mi>β</mi></math></span>. The resulting KR-PFDM metric modifies null geodesics, photon spheres, and related observables. We analyze photon motion in vacuum and in dispersive plasma environments, considering homogeneous, singular isothermal sphere (SIS), and non-singular isothermal sphere (NSIS) plasma profiles. The numerical results show that, in vacuum, increasing <span><math><mi>a</mi></math></span> from <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span> to 0.2 reduces the photon sphere radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub></math></span> from <span><math><mo>∼</mo></math></span>3.00<!--> <span><math><mi>M</mi></math></span> to <span><math><mo>∼</mo></math></span>2.85<!--> <span><math><mi>M</mi></math></span> for fixed <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span>, while raising <span><math><mi>β</mi></math></span> from 0.1 to 0.3 in <span><math><mrow><mi>a</mi><mo>=</mo><mn>0</mn></mrow></math></span> reduces <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub></math></span> by <span><math><mrow><mo>≈</mo><mn>5</mn><mtext>%</mtext></mrow></math></span>. Consequently, the shadow radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>sh</mi></mrow></msub></math></span> decreases by up to 10% for the same parameter variations. In a homogeneous plasma with <span><math><mrow><msubsup><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>, the shadow radius is smaller by <span><math><mo>∼</mo></math></span>15% compared to vacuum. Weak lensing analysis shows that for an impact parameter <span><math><mrow><mi>b</mi><mo>=</mo><mn>5</mn><mi>M</mi></mrow></math></span>, the deflection angle <span><math><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> decreases from <span><math><mo>∼</mo></math></span>1.2 rad to <span><math><mo>∼</mo></math></span>0.9 rad as <span><math><mi>a</mi></math></span> increases from <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span> to 0.2 in a uniform plasma, with SIS and NSIS profiles producing progressively smaller deflections. The magnifications of the images drop by <span><math><mo>∼</mo></math></span>8% as <span><math><mi>β</mi></math></span> increases from 0.1 to 0.3, while the larger <span><math><mi>a</mi></math></span> slightly enhances the magnification. Our results demonstrate that both Lorentz symmetry breaking and PFDM act to compactify the photon sphere, shrink the shadow, and weaken gravitational lensing signatures. The magnitude of these effects, comparable to or exceeding 5%–15% in key observables, suggests that future high-resolution VLBI facilities such as ngEHT could place meaningful constraints on <span><math><mi>a</mi></math></span> and <span><math><mi>β</mi></math></span>.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102096"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Kalb–Ramond fields and perfect fluid dark matter on black hole shadows and gravitational lensing\",\"authors\":\"Bakhodir Shodikulov ,&nbsp;Mirjavokhir Mirov ,&nbsp;Farruh Atamurotov ,&nbsp;Sushant G. Ghosh ,&nbsp;Ahmadjon Abdujabbarov\",\"doi\":\"10.1016/j.dark.2025.102096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the shadow and gravitational lensing features of static, spherically symmetric black holes in the presence of a Kalb–Ramond (KR) field and perfect fluid dark matter (PFDM). The KR field, derived from string theory, has a Lorentz-violating parameter <span><math><mi>a</mi></math></span>, whereas PFDM is defined by the density parameter <span><math><mi>β</mi></math></span>. The resulting KR-PFDM metric modifies null geodesics, photon spheres, and related observables. We analyze photon motion in vacuum and in dispersive plasma environments, considering homogeneous, singular isothermal sphere (SIS), and non-singular isothermal sphere (NSIS) plasma profiles. The numerical results show that, in vacuum, increasing <span><math><mi>a</mi></math></span> from <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span> to 0.2 reduces the photon sphere radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub></math></span> from <span><math><mo>∼</mo></math></span>3.00<!--> <span><math><mi>M</mi></math></span> to <span><math><mo>∼</mo></math></span>2.85<!--> <span><math><mi>M</mi></math></span> for fixed <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span>, while raising <span><math><mi>β</mi></math></span> from 0.1 to 0.3 in <span><math><mrow><mi>a</mi><mo>=</mo><mn>0</mn></mrow></math></span> reduces <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub></math></span> by <span><math><mrow><mo>≈</mo><mn>5</mn><mtext>%</mtext></mrow></math></span>. Consequently, the shadow radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>sh</mi></mrow></msub></math></span> decreases by up to 10% for the same parameter variations. In a homogeneous plasma with <span><math><mrow><msubsup><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>, the shadow radius is smaller by <span><math><mo>∼</mo></math></span>15% compared to vacuum. Weak lensing analysis shows that for an impact parameter <span><math><mrow><mi>b</mi><mo>=</mo><mn>5</mn><mi>M</mi></mrow></math></span>, the deflection angle <span><math><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> decreases from <span><math><mo>∼</mo></math></span>1.2 rad to <span><math><mo>∼</mo></math></span>0.9 rad as <span><math><mi>a</mi></math></span> increases from <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span> to 0.2 in a uniform plasma, with SIS and NSIS profiles producing progressively smaller deflections. The magnifications of the images drop by <span><math><mo>∼</mo></math></span>8% as <span><math><mi>β</mi></math></span> increases from 0.1 to 0.3, while the larger <span><math><mi>a</mi></math></span> slightly enhances the magnification. Our results demonstrate that both Lorentz symmetry breaking and PFDM act to compactify the photon sphere, shrink the shadow, and weaken gravitational lensing signatures. The magnitude of these effects, comparable to or exceeding 5%–15% in key observables, suggests that future high-resolution VLBI facilities such as ngEHT could place meaningful constraints on <span><math><mi>a</mi></math></span> and <span><math><mi>β</mi></math></span>.</div></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"50 \",\"pages\":\"Article 102096\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686425002894\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425002894","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在Kalb-Ramond (KR)场和完美流体暗物质(PFDM)存在下静态球对称黑洞的阴影和引力透镜特征。由弦理论导出的KR场有一个违反洛伦兹的参数a,而PFDM由密度参数β定义。由此产生的KR-PFDM度量修改了零测地线、光子球和相关的观测值。我们分析了光子在真空和色散等离子体环境中的运动,考虑均匀、奇异等温球(SIS)和非奇异等温球(NSIS)等离子体剖面。数值结果表明,在真空中,当固定β=0.2时,将a从−0.2增加到0.2,光子球半径rph从~ 3.00 M降低到~ 2.85 M,而在a=0时,将β从0.1提高到0.3,rph降低约5%。因此,对于相同的参数变化,阴影半径rsh减少高达10%。在ωp2/ω02=0.5的均匀等离子体中,阴影半径比真空小约15%。弱透镜分析表明,当冲击参数b=5M时,在均匀等离子体中,当a从- 0.2增加到- 0.2时,偏转角α δ从~ 1.2 rad减小到~ 0.9 rad,其中SIS和NSIS剖面产生的偏转逐渐减小。当β从0.1增加到0.3时,图像的放大倍率下降~ 8%,而较大的a略增强放大倍率。我们的研究结果表明,洛伦兹对称破缺和PFDM都能使光子球紧化,缩小阴影,减弱引力透镜特征。这些效应的大小,在关键观测值中相当于或超过5%-15%,表明未来的高分辨率VLBI设施,如ngEHT,可以对a和β施加有意义的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Kalb–Ramond fields and perfect fluid dark matter on black hole shadows and gravitational lensing
We study the shadow and gravitational lensing features of static, spherically symmetric black holes in the presence of a Kalb–Ramond (KR) field and perfect fluid dark matter (PFDM). The KR field, derived from string theory, has a Lorentz-violating parameter a, whereas PFDM is defined by the density parameter β. The resulting KR-PFDM metric modifies null geodesics, photon spheres, and related observables. We analyze photon motion in vacuum and in dispersive plasma environments, considering homogeneous, singular isothermal sphere (SIS), and non-singular isothermal sphere (NSIS) plasma profiles. The numerical results show that, in vacuum, increasing a from 0.2 to 0.2 reduces the photon sphere radius rph from 3.00 M to 2.85 M for fixed β=0.2, while raising β from 0.1 to 0.3 in a=0 reduces rph by 5%. Consequently, the shadow radius rsh decreases by up to 10% for the same parameter variations. In a homogeneous plasma with ωp2/ω02=0.5, the shadow radius is smaller by 15% compared to vacuum. Weak lensing analysis shows that for an impact parameter b=5M, the deflection angle αˆ decreases from 1.2 rad to 0.9 rad as a increases from 0.2 to 0.2 in a uniform plasma, with SIS and NSIS profiles producing progressively smaller deflections. The magnifications of the images drop by 8% as β increases from 0.1 to 0.3, while the larger a slightly enhances the magnification. Our results demonstrate that both Lorentz symmetry breaking and PFDM act to compactify the photon sphere, shrink the shadow, and weaken gravitational lensing signatures. The magnitude of these effects, comparable to or exceeding 5%–15% in key observables, suggests that future high-resolution VLBI facilities such as ngEHT could place meaningful constraints on a and β.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信