Cheng-Ya Song , Tian-Yi Zhou , Han-Bo Shi , Xin-Yi Li , Kan Hong
{"title":"fox01在骨骼肌萎缩中的作用:多方面的调控机制和治疗机会","authors":"Cheng-Ya Song , Tian-Yi Zhou , Han-Bo Shi , Xin-Yi Li , Kan Hong","doi":"10.1016/j.acthis.2025.152293","DOIUrl":null,"url":null,"abstract":"<div><div>Skeletal muscle, which accounts for nearly 40 % of total body mass, serves as the primary effector organ for locomotion, metabolism, and thermoregulation. Skeletal muscle atrophy, a common condition associated with aging, disease, and disability, significantly compromises patients’ quality of life. This review focuses on the occurrence and progression of skeletal muscle atrophy. Forkhead box protein O1 (<em>FoxO1</em>) is a key regulatory factor that mediates pathological mechanisms through multidimensional molecular networks. It influences skeletal muscle metabolism via post-translational modifications (PTMs), dysregulated autophagy, an imbalanced inflammatory microenvironment, and the regulation of satellite cell function. Therapeutic strategies targeting <em>FoxO1</em>, such as resveratrol-induced <em>SIRT1</em> activation and miR-486 mimics, have shown promising results in preclinical models. This review highlights the central role of <em>FoxO1</em> in molecular pathways, proposes a potential framework for addressing muscle atrophy, and offers new insights into the treatment of sarcopenia and related diseases.</div></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"127 4","pages":"Article 152293"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FoxO1 in skeletal muscle atrophy: Multifaceted regulatory mechanisms and therapeutic opportunities\",\"authors\":\"Cheng-Ya Song , Tian-Yi Zhou , Han-Bo Shi , Xin-Yi Li , Kan Hong\",\"doi\":\"10.1016/j.acthis.2025.152293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Skeletal muscle, which accounts for nearly 40 % of total body mass, serves as the primary effector organ for locomotion, metabolism, and thermoregulation. Skeletal muscle atrophy, a common condition associated with aging, disease, and disability, significantly compromises patients’ quality of life. This review focuses on the occurrence and progression of skeletal muscle atrophy. Forkhead box protein O1 (<em>FoxO1</em>) is a key regulatory factor that mediates pathological mechanisms through multidimensional molecular networks. It influences skeletal muscle metabolism via post-translational modifications (PTMs), dysregulated autophagy, an imbalanced inflammatory microenvironment, and the regulation of satellite cell function. Therapeutic strategies targeting <em>FoxO1</em>, such as resveratrol-induced <em>SIRT1</em> activation and miR-486 mimics, have shown promising results in preclinical models. This review highlights the central role of <em>FoxO1</em> in molecular pathways, proposes a potential framework for addressing muscle atrophy, and offers new insights into the treatment of sarcopenia and related diseases.</div></div>\",\"PeriodicalId\":6961,\"journal\":{\"name\":\"Acta histochemica\",\"volume\":\"127 4\",\"pages\":\"Article 152293\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta histochemica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065128125000650\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128125000650","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
FoxO1 in skeletal muscle atrophy: Multifaceted regulatory mechanisms and therapeutic opportunities
Skeletal muscle, which accounts for nearly 40 % of total body mass, serves as the primary effector organ for locomotion, metabolism, and thermoregulation. Skeletal muscle atrophy, a common condition associated with aging, disease, and disability, significantly compromises patients’ quality of life. This review focuses on the occurrence and progression of skeletal muscle atrophy. Forkhead box protein O1 (FoxO1) is a key regulatory factor that mediates pathological mechanisms through multidimensional molecular networks. It influences skeletal muscle metabolism via post-translational modifications (PTMs), dysregulated autophagy, an imbalanced inflammatory microenvironment, and the regulation of satellite cell function. Therapeutic strategies targeting FoxO1, such as resveratrol-induced SIRT1 activation and miR-486 mimics, have shown promising results in preclinical models. This review highlights the central role of FoxO1 in molecular pathways, proposes a potential framework for addressing muscle atrophy, and offers new insights into the treatment of sarcopenia and related diseases.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted