编织信息包

IF 0.9 4区 数学 Q2 MATHEMATICS
Ole Christensen , Hong Oh Kim , Rae Young Kim
{"title":"编织信息包","authors":"Ole Christensen ,&nbsp;Hong Oh Kim ,&nbsp;Rae Young Kim","doi":"10.1016/j.exmath.2025.125720","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of weaving of frames for Hilbert spaces was introduced by Bemrose et al. in 2016. Two frames <span><math><mrow><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>I</mi></mrow></msub><mo>,</mo><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>I</mi></mrow></msub></mrow></math></span> are woven if the “mixed system” <span><math><mrow><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>σ</mi></mrow></msub><mo>∪</mo><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>I</mi><mo>∖</mo><mi>σ</mi></mrow></msub></mrow></math></span> is a frame for each index set <span><math><mrow><mi>σ</mi><mo>⊂</mo><mi>I</mi><mo>;</mo></mrow></math></span> that is, processing a signal using two woven frames yields a certain stability against loss of information. The concept easily extends to <span><math><mi>N</mi></math></span> frames, for any integer <span><math><mrow><mi>N</mi><mo>&gt;</mo><mn>2</mn><mo>.</mo></mrow></math></span> Unfortunately it is nontrivial to construct useful woven frames, and the literature is sparse concerning explicit constructions. In this paper we introduce so-called information packets, which contain as well frames as fusion frames as special case. The concept of woven frames immediately generalizes to information packets, and we demonstrate how to construct practically relevant woven information packets based on particular wavelet systems in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> Interestingly, we show that certain wavelet systems can be split into <span><math><mi>N</mi></math></span> woven information packets, for any integer <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></math></span> We finally consider corresponding questions for Gabor system in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> and prove that for any fixed <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> we can find a Gabor frame that can be split into <span><math><mi>N</mi></math></span> woven information packets; however, in contrast to the wavelet case, the density conditions for Gabor system excludes the possibility of finding a single Gabor frame that works simultaneously for all <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi><mo>.</mo></mrow></math></span></div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 6","pages":"Article 125720"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weaving information packets\",\"authors\":\"Ole Christensen ,&nbsp;Hong Oh Kim ,&nbsp;Rae Young Kim\",\"doi\":\"10.1016/j.exmath.2025.125720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The concept of weaving of frames for Hilbert spaces was introduced by Bemrose et al. in 2016. Two frames <span><math><mrow><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>I</mi></mrow></msub><mo>,</mo><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>I</mi></mrow></msub></mrow></math></span> are woven if the “mixed system” <span><math><mrow><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>σ</mi></mrow></msub><mo>∪</mo><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>k</mi><mo>∈</mo><mi>I</mi><mo>∖</mo><mi>σ</mi></mrow></msub></mrow></math></span> is a frame for each index set <span><math><mrow><mi>σ</mi><mo>⊂</mo><mi>I</mi><mo>;</mo></mrow></math></span> that is, processing a signal using two woven frames yields a certain stability against loss of information. The concept easily extends to <span><math><mi>N</mi></math></span> frames, for any integer <span><math><mrow><mi>N</mi><mo>&gt;</mo><mn>2</mn><mo>.</mo></mrow></math></span> Unfortunately it is nontrivial to construct useful woven frames, and the literature is sparse concerning explicit constructions. In this paper we introduce so-called information packets, which contain as well frames as fusion frames as special case. The concept of woven frames immediately generalizes to information packets, and we demonstrate how to construct practically relevant woven information packets based on particular wavelet systems in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> Interestingly, we show that certain wavelet systems can be split into <span><math><mi>N</mi></math></span> woven information packets, for any integer <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></math></span> We finally consider corresponding questions for Gabor system in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> and prove that for any fixed <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> we can find a Gabor frame that can be split into <span><math><mi>N</mi></math></span> woven information packets; however, in contrast to the wavelet case, the density conditions for Gabor system excludes the possibility of finding a single Gabor frame that works simultaneously for all <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi><mo>.</mo></mrow></math></span></div></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":\"43 6\",\"pages\":\"Article 125720\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086925000751\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086925000751","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Hilbert空间框架编织的概念由Bemrose等人于2016年提出。如果“混合系统”{fk}k∈σ∪{gk}k∈I∈σ是每个指标集σ∧I的一个框架,则两个框架{fk}k∈I,{gk}k∈I是编织的;也就是说,使用两个编织帧处理一个信号,可以产生一定的稳定性,防止信息丢失。这个概念很容易扩展到N帧,对于任意整数N>;2。不幸的是,构建有用的编织框架并非易事,而且关于明确结构的文献很少。本文引入了所谓的信息包,作为特殊情况,信息包既包含帧,也包含融合帧。编织框架的概念立即推广到信息包,我们演示了如何基于特定的小波系统在L2(R)中构建实用的编织信息包。有趣的是,我们证明了某些小波系统可以被分割成N个编织信息包,对于任意整数N≥2。最后考虑L2(R)中Gabor系统的相应问题,并证明对于任意固定N∈N,我们都可以找到一个可以分割成N个编织信息包的Gabor框架;然而,与小波变换不同的是,Gabor系统的密度条件排除了找到对所有N∈N同时起作用的单一Gabor框架的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weaving information packets
The concept of weaving of frames for Hilbert spaces was introduced by Bemrose et al. in 2016. Two frames {fk}kI,{gk}kI are woven if the “mixed system” {fk}kσ{gk}kIσ is a frame for each index set σI; that is, processing a signal using two woven frames yields a certain stability against loss of information. The concept easily extends to N frames, for any integer N>2. Unfortunately it is nontrivial to construct useful woven frames, and the literature is sparse concerning explicit constructions. In this paper we introduce so-called information packets, which contain as well frames as fusion frames as special case. The concept of woven frames immediately generalizes to information packets, and we demonstrate how to construct practically relevant woven information packets based on particular wavelet systems in L2(R). Interestingly, we show that certain wavelet systems can be split into N woven information packets, for any integer N2. We finally consider corresponding questions for Gabor system in L2(R), and prove that for any fixed NN we can find a Gabor frame that can be split into N woven information packets; however, in contrast to the wavelet case, the density conditions for Gabor system excludes the possibility of finding a single Gabor frame that works simultaneously for all NN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信