利用模拟驱动机器学习和遗传算法优化的细菌纳米网络性能预测建模

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Mustafa Ozan Duman, Ibrahim Isik, Mehmet Bilal Er, Mehmet Emin Tagluk, Esme Isik
{"title":"利用模拟驱动机器学习和遗传算法优化的细菌纳米网络性能预测建模","authors":"Mustafa Ozan Duman, Ibrahim Isik, Mehmet Bilal Er, Mehmet Emin Tagluk, Esme Isik","doi":"10.1002/adts.202501275","DOIUrl":null,"url":null,"abstract":"Bacteria-based nanonetwork (BN) offers a biologically inspired solution for enabling information exchange between nanomachines (NMs) in environments where traditional communication methods are ineffective. This study presents a 2D simulation model of a BN system that captures the chemotactic behavior of a single <i>Escherichia coli</i> (<i>E. coli</i>) bacterium navigating from a transmitter (TX) toward a receiver (RX) under varying environmental conditions. Key parameters, which are chemoattractant release rate (<i>Q</i>), TX-RX distance (<i>d</i>), and bacterial lifespan (<span data-altimg=\"/cms/asset/ab54f192-1340-42bd-bd6d-dadc5e52a6da/adts70141-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70141-math-0001.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,10\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"t Subscript d e a t h\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,2,3,4,5\" data-semantic-content=\"6,7,8,9\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70141:adts70141-math-0001\" display=\"inline\" location=\"graphic/adts70141-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,10\" data-semantic-role=\"latinletter\" data-semantic-speech=\"t Subscript d e a t h\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,2,3,4,5\" data-semantic-content=\"6,7,8,9\" data-semantic-parent=\"11\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">e</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">a</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">h</mi></mrow></msub>$t_{death}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), are systematically varied to evaluate their impact on communication performance, measured in terms of reach time and success rate. To enable accurate performance prediction without the need for computationally expensive repeated simulations, an analytical model is constructed using various machine learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP). Hyperparameters of MLP are optimized using a Genetic Algorithm (GA), significantly enhancing predictive accuracy and training stability. The results demonstrate the effectiveness of integrating dynamic simulation with data-driven modeling and hyperparameter optimization to represent complex system behavior. This framework offers valuable design insights for BN system development and supports the creation of efficient, scalable nanonetworks.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"17 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Modeling of Bacteria-Based Nanonetwork Performance Using Simulation-Driven Machine Learning and Genetic Algorithm Optimization\",\"authors\":\"Mustafa Ozan Duman, Ibrahim Isik, Mehmet Bilal Er, Mehmet Emin Tagluk, Esme Isik\",\"doi\":\"10.1002/adts.202501275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacteria-based nanonetwork (BN) offers a biologically inspired solution for enabling information exchange between nanomachines (NMs) in environments where traditional communication methods are ineffective. This study presents a 2D simulation model of a BN system that captures the chemotactic behavior of a single <i>Escherichia coli</i> (<i>E. coli</i>) bacterium navigating from a transmitter (TX) toward a receiver (RX) under varying environmental conditions. Key parameters, which are chemoattractant release rate (<i>Q</i>), TX-RX distance (<i>d</i>), and bacterial lifespan (<span data-altimg=\\\"/cms/asset/ab54f192-1340-42bd-bd6d-dadc5e52a6da/adts70141-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"1\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts70141-math-0001.png\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,10\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"t Subscript d e a t h\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,2,3,4,5\\\" data-semantic-content=\\\"6,7,8,9\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts70141:adts70141-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/adts70141-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"t Subscript d e a t h\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">t</mi><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,2,3,4,5\\\" data-semantic-content=\\\"6,7,8,9\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">d</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">e</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">a</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">t</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">h</mi></mrow></msub>$t_{death}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), are systematically varied to evaluate their impact on communication performance, measured in terms of reach time and success rate. To enable accurate performance prediction without the need for computationally expensive repeated simulations, an analytical model is constructed using various machine learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP). Hyperparameters of MLP are optimized using a Genetic Algorithm (GA), significantly enhancing predictive accuracy and training stability. The results demonstrate the effectiveness of integrating dynamic simulation with data-driven modeling and hyperparameter optimization to represent complex system behavior. This framework offers valuable design insights for BN system development and supports the creation of efficient, scalable nanonetworks.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202501275\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501275","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于细菌的纳米网络(BN)为在传统通信方法无效的环境中实现纳米机器(NMs)之间的信息交换提供了一种受生物学启发的解决方案。本研究提出了一个BN系统的二维模拟模型,该模型捕获了单个大肠杆菌(E. coli)细菌在不同环境条件下从发射器(TX)导航到接收器(RX)的趋化行为。关键参数是化学引诱剂释放速率(Q)、TX-RX距离(d)和细菌寿命(td±e±a±t±h$t_{death}$),系统地变化以评估它们对通信性能的影响,以到达时间和成功率来衡量。为了实现准确的性能预测,而不需要计算昂贵的重复模拟,使用各种机器学习(ML)技术构建了分析模型,包括线性回归(LR),随机森林(RF)和多层感知器(MLP)。采用遗传算法对MLP的超参数进行优化,显著提高了MLP的预测精度和训练稳定性。结果表明,将动态仿真与数据驱动建模和超参数优化相结合,可以有效地表征复杂的系统行为。该框架为BN系统开发提供了有价值的设计见解,并支持创建高效,可扩展的纳米网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predictive Modeling of Bacteria-Based Nanonetwork Performance Using Simulation-Driven Machine Learning and Genetic Algorithm Optimization

Predictive Modeling of Bacteria-Based Nanonetwork Performance Using Simulation-Driven Machine Learning and Genetic Algorithm Optimization
Bacteria-based nanonetwork (BN) offers a biologically inspired solution for enabling information exchange between nanomachines (NMs) in environments where traditional communication methods are ineffective. This study presents a 2D simulation model of a BN system that captures the chemotactic behavior of a single Escherichia coli (E. coli) bacterium navigating from a transmitter (TX) toward a receiver (RX) under varying environmental conditions. Key parameters, which are chemoattractant release rate (Q), TX-RX distance (d), and bacterial lifespan (tdeath$t_{death}$), are systematically varied to evaluate their impact on communication performance, measured in terms of reach time and success rate. To enable accurate performance prediction without the need for computationally expensive repeated simulations, an analytical model is constructed using various machine learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP). Hyperparameters of MLP are optimized using a Genetic Algorithm (GA), significantly enhancing predictive accuracy and training stability. The results demonstrate the effectiveness of integrating dynamic simulation with data-driven modeling and hyperparameter optimization to represent complex system behavior. This framework offers valuable design insights for BN system development and supports the creation of efficient, scalable nanonetworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信