Andrea Severini, Camilla Ferrari, Marianna Burello, Francesco Vizza, Marco Bonechi, Riccardo Chelli, Massimo Innocenti, Fabrizio Roncaglia, Claudio Fontanesi
{"title":"电子结构在钌基配合物催化析氢反应动力学中的作用","authors":"Andrea Severini, Camilla Ferrari, Marianna Burello, Francesco Vizza, Marco Bonechi, Riccardo Chelli, Massimo Innocenti, Fabrizio Roncaglia, Claudio Fontanesi","doi":"10.1039/d5cp03035h","DOIUrl":null,"url":null,"abstract":"The catalytic activity for the hydrogen evolution reaction of three structurally related ruthenium catalysts is compared: a di-nuclear [Ru 2 (OTf)(m-H)(Me 2 dad)(dbcot) 2 ] (C1) and two mononuclear analogues (C2, C3). The reaction mechanism is analyzed at a molecular level by using ab-initio DFT calculation to determine singular-points on the potential energy surface (PES). Then, time dependent behavior is investigated by calculationing molecular dynamic (MD) trajectories, within the Dynamic Reaction Coordinate (DRC) paradigm. Displacement of molecular hydrogen results the ratedetermining step. C2 shows a promising low activation barrier: 8.6 kcal/mol, although H 2 release is kinetically slower. C3 yields molecular hydrogen but fails its release, even when provided with kinetic energy larger than the activation barrier (24.4 kcal/mol), revealing unforeseen mechanistic traps, beyond purely energetic considerations. This work underscores how ligand coordination flexibility critically affects the efficiency of hydrogen catalysis, paving the way for the rational design of novel catalysts.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"162 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Electronic Structure in the Hydrogen Evolution Reaction Dynamics as Catalyzed by Ru-based Complexes\",\"authors\":\"Andrea Severini, Camilla Ferrari, Marianna Burello, Francesco Vizza, Marco Bonechi, Riccardo Chelli, Massimo Innocenti, Fabrizio Roncaglia, Claudio Fontanesi\",\"doi\":\"10.1039/d5cp03035h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The catalytic activity for the hydrogen evolution reaction of three structurally related ruthenium catalysts is compared: a di-nuclear [Ru 2 (OTf)(m-H)(Me 2 dad)(dbcot) 2 ] (C1) and two mononuclear analogues (C2, C3). The reaction mechanism is analyzed at a molecular level by using ab-initio DFT calculation to determine singular-points on the potential energy surface (PES). Then, time dependent behavior is investigated by calculationing molecular dynamic (MD) trajectories, within the Dynamic Reaction Coordinate (DRC) paradigm. Displacement of molecular hydrogen results the ratedetermining step. C2 shows a promising low activation barrier: 8.6 kcal/mol, although H 2 release is kinetically slower. C3 yields molecular hydrogen but fails its release, even when provided with kinetic energy larger than the activation barrier (24.4 kcal/mol), revealing unforeseen mechanistic traps, beyond purely energetic considerations. This work underscores how ligand coordination flexibility critically affects the efficiency of hydrogen catalysis, paving the way for the rational design of novel catalysts.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp03035h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp03035h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The Role of Electronic Structure in the Hydrogen Evolution Reaction Dynamics as Catalyzed by Ru-based Complexes
The catalytic activity for the hydrogen evolution reaction of three structurally related ruthenium catalysts is compared: a di-nuclear [Ru 2 (OTf)(m-H)(Me 2 dad)(dbcot) 2 ] (C1) and two mononuclear analogues (C2, C3). The reaction mechanism is analyzed at a molecular level by using ab-initio DFT calculation to determine singular-points on the potential energy surface (PES). Then, time dependent behavior is investigated by calculationing molecular dynamic (MD) trajectories, within the Dynamic Reaction Coordinate (DRC) paradigm. Displacement of molecular hydrogen results the ratedetermining step. C2 shows a promising low activation barrier: 8.6 kcal/mol, although H 2 release is kinetically slower. C3 yields molecular hydrogen but fails its release, even when provided with kinetic energy larger than the activation barrier (24.4 kcal/mol), revealing unforeseen mechanistic traps, beyond purely energetic considerations. This work underscores how ligand coordination flexibility critically affects the efficiency of hydrogen catalysis, paving the way for the rational design of novel catalysts.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.