Yin-Da Guo, Shou-Shan Bao, Tianjun Li and Hong Zhang
{"title":"吸积对标量超辐射不稳定性的影响","authors":"Yin-Da Guo, Shou-Shan Bao, Tianjun Li and Hong Zhang","doi":"10.1088/1475-7516/2025/09/066","DOIUrl":null,"url":null,"abstract":"Superradiance can lead to the formation of a black hole (BH) condensate system. We thoroughly investigate the accretion effect on the evolution of this system, and the gravitational wave signals it emits in the presence of multiple superradiance modes. Assuming the multiplication of the BH mass and scalar mass as a small number, we obtain the analytical approximations of all important quantities, which can be directly applied to phenomenological studies. In addition, we confirm that accretion could significantly enhance the gravitational wave (GW) emission and reduce its duration, and show that the GW beat signature is similarly modified.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"90 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of accretion on scalar superradiant instability\",\"authors\":\"Yin-Da Guo, Shou-Shan Bao, Tianjun Li and Hong Zhang\",\"doi\":\"10.1088/1475-7516/2025/09/066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superradiance can lead to the formation of a black hole (BH) condensate system. We thoroughly investigate the accretion effect on the evolution of this system, and the gravitational wave signals it emits in the presence of multiple superradiance modes. Assuming the multiplication of the BH mass and scalar mass as a small number, we obtain the analytical approximations of all important quantities, which can be directly applied to phenomenological studies. In addition, we confirm that accretion could significantly enhance the gravitational wave (GW) emission and reduce its duration, and show that the GW beat signature is similarly modified.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/09/066\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/09/066","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Effect of accretion on scalar superradiant instability
Superradiance can lead to the formation of a black hole (BH) condensate system. We thoroughly investigate the accretion effect on the evolution of this system, and the gravitational wave signals it emits in the presence of multiple superradiance modes. Assuming the multiplication of the BH mass and scalar mass as a small number, we obtain the analytical approximations of all important quantities, which can be directly applied to phenomenological studies. In addition, we confirm that accretion could significantly enhance the gravitational wave (GW) emission and reduce its duration, and show that the GW beat signature is similarly modified.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.