{"title":"一个有效的希格斯暴胀理论","authors":"Alessandro Tronconi and Giovanni Venturi","doi":"10.1088/1475-7516/2025/09/068","DOIUrl":null,"url":null,"abstract":"The generation of large curvature perturbations associated with the production of primordial black holes is studied in the context of a Higgs inflaton. To enable this amplification, we consider an inflationary model in which the tree-level action for gravity and the Standard Model Higgs is modified by quantum corrections, described by a series of higher-dimension operators. Finally within a minimal EFT framework, we present two viable models in which the spectrum of curvature perturbations generated by the Higgs field is consistent with CMB observations and can lead to the formation of primordial black holes in the asteroid mass range, potentially accounting for the entirety of dark matter.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"2 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective theory for Higgs inflation\",\"authors\":\"Alessandro Tronconi and Giovanni Venturi\",\"doi\":\"10.1088/1475-7516/2025/09/068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of large curvature perturbations associated with the production of primordial black holes is studied in the context of a Higgs inflaton. To enable this amplification, we consider an inflationary model in which the tree-level action for gravity and the Standard Model Higgs is modified by quantum corrections, described by a series of higher-dimension operators. Finally within a minimal EFT framework, we present two viable models in which the spectrum of curvature perturbations generated by the Higgs field is consistent with CMB observations and can lead to the formation of primordial black holes in the asteroid mass range, potentially accounting for the entirety of dark matter.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/09/068\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/09/068","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The generation of large curvature perturbations associated with the production of primordial black holes is studied in the context of a Higgs inflaton. To enable this amplification, we consider an inflationary model in which the tree-level action for gravity and the Standard Model Higgs is modified by quantum corrections, described by a series of higher-dimension operators. Finally within a minimal EFT framework, we present two viable models in which the spectrum of curvature perturbations generated by the Higgs field is consistent with CMB observations and can lead to the formation of primordial black holes in the asteroid mass range, potentially accounting for the entirety of dark matter.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.