基于SOI集成芯片的时间盒编码的量子态制备。

Applied optics Pub Date : 2025-09-20 DOI:10.1364/AO.560473
Hanming Yang, Chunxue Zhang, Pengwei Cui, Junchi Ma, Liyong Guo, Song Huang, Jianguang Li, Jiashun Zhang, Yue Wang, Xiaojie Yin, Wei Chen, YuanDa Wu, Junming An
{"title":"基于SOI集成芯片的时间盒编码的量子态制备。","authors":"Hanming Yang, Chunxue Zhang, Pengwei Cui, Junchi Ma, Liyong Guo, Song Huang, Jianguang Li, Jiashun Zhang, Yue Wang, Xiaojie Yin, Wei Chen, YuanDa Wu, Junming An","doi":"10.1364/AO.560473","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum key distribution (QKD) ensures unconditional security for public key encryption by utilizing the principles of quantum mechanics. This study designs and fabricates a QKD chip based on the silicon-on-insulator (SOI) platform, employing a time-bin encoding scheme with decoy states. In the design, we integrate a slow thermo-optic phase modulator with a carrier-depletion modulator to ensure high fidelity of quantum states and high-speed encoding capabilities, enabling precise and flexible time-bin encoding. We achieve the encoding and decoding of four BB84 quantum states at a repetition rate of 100 MHz. In the experiment, the visibility of the interference fringes for the phase state |+⟩ is 93.66%, and for the phase state |-⟩, it is 92.36%. The extinction ratios for the time states |0⟩ and |1⟩ are 19.33 and 18.72 dB, respectively. The experimental results demonstrate that the chip has efficient quantum state preparation capability, providing significant support for the practical implementation of quantum key distribution technology. Additionally, we propose a new chip structure, to our knowledge, using SOI and <i>S</i><i>i</i><sub>3</sub><i>N</i><sub>4</sub> heterogeneous integration. The SOI waveguide is used for high-speed modulation encoding, while the delay line is composed of <i>S</i><i>i</i><sub>3</sub><i>N</i><sub>4</sub> waveguides. This structure is designed to address the stability issues of the chip caused by temperature variations.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 27","pages":"7948-7956"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum state preparation of time-bin encoding based on SOI integrated chips.\",\"authors\":\"Hanming Yang, Chunxue Zhang, Pengwei Cui, Junchi Ma, Liyong Guo, Song Huang, Jianguang Li, Jiashun Zhang, Yue Wang, Xiaojie Yin, Wei Chen, YuanDa Wu, Junming An\",\"doi\":\"10.1364/AO.560473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum key distribution (QKD) ensures unconditional security for public key encryption by utilizing the principles of quantum mechanics. This study designs and fabricates a QKD chip based on the silicon-on-insulator (SOI) platform, employing a time-bin encoding scheme with decoy states. In the design, we integrate a slow thermo-optic phase modulator with a carrier-depletion modulator to ensure high fidelity of quantum states and high-speed encoding capabilities, enabling precise and flexible time-bin encoding. We achieve the encoding and decoding of four BB84 quantum states at a repetition rate of 100 MHz. In the experiment, the visibility of the interference fringes for the phase state |+⟩ is 93.66%, and for the phase state |-⟩, it is 92.36%. The extinction ratios for the time states |0⟩ and |1⟩ are 19.33 and 18.72 dB, respectively. The experimental results demonstrate that the chip has efficient quantum state preparation capability, providing significant support for the practical implementation of quantum key distribution technology. Additionally, we propose a new chip structure, to our knowledge, using SOI and <i>S</i><i>i</i><sub>3</sub><i>N</i><sub>4</sub> heterogeneous integration. The SOI waveguide is used for high-speed modulation encoding, while the delay line is composed of <i>S</i><i>i</i><sub>3</sub><i>N</i><sub>4</sub> waveguides. This structure is designed to address the stability issues of the chip caused by temperature variations.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 27\",\"pages\":\"7948-7956\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.560473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.560473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子密钥分发(QKD)利用量子力学原理,保证了公钥加密的无条件安全性。本研究设计并制造了基于绝缘体上硅(SOI)平台的QKD芯片,采用带有诱饵态的时间盒编码方案。在设计中,我们将慢速热光相位调制器与载流子耗尽调制器集成在一起,以确保量子态的高保真度和高速编码能力,实现精确和灵活的时间bin编码。我们以100 MHz的重复频率实现了4个BB84量子态的编码和解码。在实验中,相态|+⟩的干涉条纹的可见性为93.66%,而相态|-⟩的可见性为92.36%。时间状态|0⟩和|1⟩的消光比分别为19.33和18.72 dB。实验结果表明,该芯片具有高效的量子态制备能力,为量子密钥分发技术的实际实现提供了重要支持。此外,我们提出了一种新的芯片结构,据我们所知,使用SOI和Si3N4异构集成。SOI波导用于高速调制编码,延迟线由Si3N4波导组成。这种结构旨在解决由温度变化引起的芯片稳定性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum state preparation of time-bin encoding based on SOI integrated chips.

Quantum key distribution (QKD) ensures unconditional security for public key encryption by utilizing the principles of quantum mechanics. This study designs and fabricates a QKD chip based on the silicon-on-insulator (SOI) platform, employing a time-bin encoding scheme with decoy states. In the design, we integrate a slow thermo-optic phase modulator with a carrier-depletion modulator to ensure high fidelity of quantum states and high-speed encoding capabilities, enabling precise and flexible time-bin encoding. We achieve the encoding and decoding of four BB84 quantum states at a repetition rate of 100 MHz. In the experiment, the visibility of the interference fringes for the phase state |+⟩ is 93.66%, and for the phase state |-⟩, it is 92.36%. The extinction ratios for the time states |0⟩ and |1⟩ are 19.33 and 18.72 dB, respectively. The experimental results demonstrate that the chip has efficient quantum state preparation capability, providing significant support for the practical implementation of quantum key distribution technology. Additionally, we propose a new chip structure, to our knowledge, using SOI and Si3N4 heterogeneous integration. The SOI waveguide is used for high-speed modulation encoding, while the delay line is composed of Si3N4 waveguides. This structure is designed to address the stability issues of the chip caused by temperature variations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信