基于光电循环频移环路的多倍频调频信号产生。

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.567480
Hui Cheng, Jianxin Ma
{"title":"基于光电循环频移环路的多倍频调频信号产生。","authors":"Hui Cheng, Jianxin Ma","doi":"10.1364/AO.567480","DOIUrl":null,"url":null,"abstract":"<p><p>A scheme to generate multi-octave linear frequency modulation (LFM) signals based on an optoelectronic recirculating frequency shift loop (RFSL) is proposed and demonstrated by simulation. In optoelectronic RFSL, the Mach-Zehnder modulator (MZM) driven by the initial narrowband LFM signal operates in the CS-DSB pattern to generate ±1st-order optical sidebands. The two sets of frequency components beat in a photodetector and generate an LFM signal with a doubled bandwidth. Then, the generated signal is used to replace the initial LFM signal and fed to the MZM to close the loop. As the circulating turn increases, the loop can output a multi-octave LFM signal. In addition, this scheme can easily suppress the influence of laser phase noise, thereby ensuring the signal performance. In a proof-of-concept simulation, the loop generates an 8.39 GHz LFM signal by using the initial LFM signal with a bandwidth of 0.524 GHz. Its bandwidth has increased by 16 times, resulting in the time-bandwidth product increasing to 8590. The bandwidth and center frequency of the generated LFM signals can also be adjusted by changing the parameters of the initial LFM signal and the bandwidth of the electrical band-pass filter. By selecting lasers with linewidths of 1 kHz, 1 MHz, and 0.1 GHz to change phase noise, the phase noise performance of the generated signals remains unchanged, indicating that the system effectively suppresses the laser phase noise.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7423-7429"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-octave LFM signal generation based on an optoelectronic recirculating frequency shift loop.\",\"authors\":\"Hui Cheng, Jianxin Ma\",\"doi\":\"10.1364/AO.567480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A scheme to generate multi-octave linear frequency modulation (LFM) signals based on an optoelectronic recirculating frequency shift loop (RFSL) is proposed and demonstrated by simulation. In optoelectronic RFSL, the Mach-Zehnder modulator (MZM) driven by the initial narrowband LFM signal operates in the CS-DSB pattern to generate ±1st-order optical sidebands. The two sets of frequency components beat in a photodetector and generate an LFM signal with a doubled bandwidth. Then, the generated signal is used to replace the initial LFM signal and fed to the MZM to close the loop. As the circulating turn increases, the loop can output a multi-octave LFM signal. In addition, this scheme can easily suppress the influence of laser phase noise, thereby ensuring the signal performance. In a proof-of-concept simulation, the loop generates an 8.39 GHz LFM signal by using the initial LFM signal with a bandwidth of 0.524 GHz. Its bandwidth has increased by 16 times, resulting in the time-bandwidth product increasing to 8590. The bandwidth and center frequency of the generated LFM signals can also be adjusted by changing the parameters of the initial LFM signal and the bandwidth of the electrical band-pass filter. By selecting lasers with linewidths of 1 kHz, 1 MHz, and 0.1 GHz to change phase noise, the phase noise performance of the generated signals remains unchanged, indicating that the system effectively suppresses the laser phase noise.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 25\",\"pages\":\"7423-7429\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.567480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.567480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于光电循环频移环路(RFSL)产生多倍频程线性调频(LFM)信号的方案,并通过仿真进行了验证。在光电RFSL中,由初始窄带LFM信号驱动的Mach-Zehnder调制器(MZM)在CS-DSB模式下工作,产生±一阶光边带。这两组频率分量在光电探测器中跳动,产生带宽加倍的LFM信号。然后,用生成的信号代替初始LFM信号,并提供给MZM完成闭环。随着循环匝数的增加,环路可以输出多倍频的线性调频信号。此外,该方案可以很容易地抑制激光相位噪声的影响,从而保证信号的性能。在概念验证仿真中,环路使用带宽为0.524 GHz的初始LFM信号产生8.39 GHz的LFM信号。它的带宽增加了16倍,时间带宽乘积增加到8590。通过改变初始LFM信号的参数和电带通滤波器的带宽,也可以调节生成的LFM信号的带宽和中心频率。通过选择线宽分别为1khz、1mhz和0.1 GHz的激光器改变相位噪声,产生的信号的相位噪声性能保持不变,表明系统有效地抑制了激光相位噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-octave LFM signal generation based on an optoelectronic recirculating frequency shift loop.

A scheme to generate multi-octave linear frequency modulation (LFM) signals based on an optoelectronic recirculating frequency shift loop (RFSL) is proposed and demonstrated by simulation. In optoelectronic RFSL, the Mach-Zehnder modulator (MZM) driven by the initial narrowband LFM signal operates in the CS-DSB pattern to generate ±1st-order optical sidebands. The two sets of frequency components beat in a photodetector and generate an LFM signal with a doubled bandwidth. Then, the generated signal is used to replace the initial LFM signal and fed to the MZM to close the loop. As the circulating turn increases, the loop can output a multi-octave LFM signal. In addition, this scheme can easily suppress the influence of laser phase noise, thereby ensuring the signal performance. In a proof-of-concept simulation, the loop generates an 8.39 GHz LFM signal by using the initial LFM signal with a bandwidth of 0.524 GHz. Its bandwidth has increased by 16 times, resulting in the time-bandwidth product increasing to 8590. The bandwidth and center frequency of the generated LFM signals can also be adjusted by changing the parameters of the initial LFM signal and the bandwidth of the electrical band-pass filter. By selecting lasers with linewidths of 1 kHz, 1 MHz, and 0.1 GHz to change phase noise, the phase noise performance of the generated signals remains unchanged, indicating that the system effectively suppresses the laser phase noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信