脉冲激光铣削CVD单晶金刚石的工艺。

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.572252
Zi-Lei Liu, Cheng-Gong Zhang, Kai Liu, Xin-Lei Li, Yu Shen, Zhong-Zheng Chen, Qin-Jun Peng, Xue-Yan Dong
{"title":"脉冲激光铣削CVD单晶金刚石的工艺。","authors":"Zi-Lei Liu, Cheng-Gong Zhang, Kai Liu, Xin-Lei Li, Yu Shen, Zhong-Zheng Chen, Qin-Jun Peng, Xue-Yan Dong","doi":"10.1364/AO.572252","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical vapor deposition (CVD) diamond has high thermal conductivity and a low coefficient of thermal expansion, making it a good thermal conductive material. However, conventional processing methods are often difficult to balance processing quality while pursuing high efficiency. In view of this, this study focuses on the milling of CVD single crystal diamond using nanosecond and picosecond laser technology, aiming to optimize its processing accuracy and efficiency. By systematically investigating the effects of laser incidence angle, pulse width, and spot size on the milling angle of diamond. It is found that the slope angle of the machined surface can be effectively reduced by decreasing the laser incidence angle, shortening the pulse width, and reducing the spot size. With an average power of 200 W, a pulse width of 12 ps, a spot diameter of 60 µm, an incidence angle of 3°, and a scanning speed of 30 mm/s, the milling angle of diamond can be optimized to 1.30°, and at the same time, the surface roughness Sa is 0.42 µm, the maximum height difference of the surface Sz is 2.76 µm, and the machining efficiency reaches 32.57<i>m</i><i>m</i><sup>3</sup>/<i>h</i>. When the pulse width is adjusted to 150 ns and the rest of the parameters are kept unchanged, the milling angle of diamond is 2.45°, the Sa is 0.45 µm, the Sz is 2.88 µm, and the machining efficiency is improved to 66.10<i>m</i><i>m</i><sup>3</sup>/<i>h</i>. The present study proposes a high-efficiency and low-damage machining strategy for chip bonding diamond, which provides an important reference for the application of diamond in the field of microelectronics encapsulation.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7298-7303"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulsed laser milling process of CVD single crystal diamond.\",\"authors\":\"Zi-Lei Liu, Cheng-Gong Zhang, Kai Liu, Xin-Lei Li, Yu Shen, Zhong-Zheng Chen, Qin-Jun Peng, Xue-Yan Dong\",\"doi\":\"10.1364/AO.572252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical vapor deposition (CVD) diamond has high thermal conductivity and a low coefficient of thermal expansion, making it a good thermal conductive material. However, conventional processing methods are often difficult to balance processing quality while pursuing high efficiency. In view of this, this study focuses on the milling of CVD single crystal diamond using nanosecond and picosecond laser technology, aiming to optimize its processing accuracy and efficiency. By systematically investigating the effects of laser incidence angle, pulse width, and spot size on the milling angle of diamond. It is found that the slope angle of the machined surface can be effectively reduced by decreasing the laser incidence angle, shortening the pulse width, and reducing the spot size. With an average power of 200 W, a pulse width of 12 ps, a spot diameter of 60 µm, an incidence angle of 3°, and a scanning speed of 30 mm/s, the milling angle of diamond can be optimized to 1.30°, and at the same time, the surface roughness Sa is 0.42 µm, the maximum height difference of the surface Sz is 2.76 µm, and the machining efficiency reaches 32.57<i>m</i><i>m</i><sup>3</sup>/<i>h</i>. When the pulse width is adjusted to 150 ns and the rest of the parameters are kept unchanged, the milling angle of diamond is 2.45°, the Sa is 0.45 µm, the Sz is 2.88 µm, and the machining efficiency is improved to 66.10<i>m</i><i>m</i><sup>3</sup>/<i>h</i>. The present study proposes a high-efficiency and low-damage machining strategy for chip bonding diamond, which provides an important reference for the application of diamond in the field of microelectronics encapsulation.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 25\",\"pages\":\"7298-7303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.572252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.572252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化学气相沉积(CVD)金刚石具有高导热性和低热膨胀系数,是一种良好的导热材料。然而,传统的加工方法往往难以在追求高效率的同时平衡加工质量。鉴于此,本研究重点研究了利用纳秒和皮秒激光技术铣削CVD单晶金刚石,以优化其加工精度和效率。系统地研究了激光入射角、脉冲宽度和光斑尺寸对金刚石铣削角的影响。研究发现,减小激光入射角、缩短脉冲宽度和减小光斑尺寸可以有效地减小加工表面的斜角。在平均功率为200 W,脉冲宽度为12 ps,光斑直径为60µm,入射角为3°,扫描速度为30 mm/s的条件下,金刚石的铣削角可优化为1.30°,同时,表面粗糙度Sa为0.42µm,表面最大高度差Sz为2.76µm,加工效率达到32.57mm3/h。当脉宽调整为150ns,其余参数不变时,金刚石的铣削角度为2.45°,Sa为0.45µm, Sz为2.88µm,加工效率提高到66.10mm3/h。本研究提出了一种高效、低损伤的芯片键合金刚石加工策略,为金刚石在微电子封装领域的应用提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pulsed laser milling process of CVD single crystal diamond.

Chemical vapor deposition (CVD) diamond has high thermal conductivity and a low coefficient of thermal expansion, making it a good thermal conductive material. However, conventional processing methods are often difficult to balance processing quality while pursuing high efficiency. In view of this, this study focuses on the milling of CVD single crystal diamond using nanosecond and picosecond laser technology, aiming to optimize its processing accuracy and efficiency. By systematically investigating the effects of laser incidence angle, pulse width, and spot size on the milling angle of diamond. It is found that the slope angle of the machined surface can be effectively reduced by decreasing the laser incidence angle, shortening the pulse width, and reducing the spot size. With an average power of 200 W, a pulse width of 12 ps, a spot diameter of 60 µm, an incidence angle of 3°, and a scanning speed of 30 mm/s, the milling angle of diamond can be optimized to 1.30°, and at the same time, the surface roughness Sa is 0.42 µm, the maximum height difference of the surface Sz is 2.76 µm, and the machining efficiency reaches 32.57mm3/h. When the pulse width is adjusted to 150 ns and the rest of the parameters are kept unchanged, the milling angle of diamond is 2.45°, the Sa is 0.45 µm, the Sz is 2.88 µm, and the machining efficiency is improved to 66.10mm3/h. The present study proposes a high-efficiency and low-damage machining strategy for chip bonding diamond, which provides an important reference for the application of diamond in the field of microelectronics encapsulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信