{"title":"具有多波段红外隐身和高效辐射散热的工程微粒复合涂层。","authors":"Bowei Xie, Jian Zhan, Mu Du","doi":"10.1364/AO.574080","DOIUrl":null,"url":null,"abstract":"<p><p>The fundamental conflict between infrared stealth and thermal management, where suppressing thermal emission for camouflage inevitably causes detrimental heat accumulation, poses a long-standing challenge in modern military technology. This work resolves this paradox through a bottom-up design of a particle composite coating, where complex spectral selectivity is engineered at the single-particle level. We computationally designed and validated a multilayer spherical particle, consisting of a <i>C</i><i>a</i><i>M</i><i>g</i>(<i>C</i><i>O</i><sub>3</sub>)<sub>2</sub> shell, a <i>V</i><i>O</i><sub>2</sub> inner shell, and a Ge core, embedded within a polyethylene (PE) binder. The synergistic roles of the materials allow for precise spectral control: <i>C</i><i>a</i><i>M</i><i>g</i>(<i>C</i><i>O</i><sub>3</sub>)<sub>2</sub> provides a primary emission peak in the 6-7 µm range, <i>V</i><i>O</i><sub>2</sub> broadens this non-atmospheric window for enhanced heat dissipation, and the Ge layer simultaneously shields absorption in the infrared stealth bands and boosts absorption in the VIS-NIR spectrum. The optimized coating achieves a high average emissivity of 0.6471 in the VIS-NIR and 0.5091 in the 5-8 µm band for effective thermal radiation, while maintaining exceptionally low emissivity in the atmospheric window bands (SWIR: 0.2326, MWIR: 0.3208, and LWIR: 0.0915). Simulated thermal imaging demonstrates superior stealth performance. This coating offers a scalable and effective strategy for developing next-generation materials compatible with both multiband stealth and heat dissipation requirements.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 27","pages":"8011-8018"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite coating with engineered microparticles for multiband infrared stealth and efficient radiative heat dissipation.\",\"authors\":\"Bowei Xie, Jian Zhan, Mu Du\",\"doi\":\"10.1364/AO.574080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fundamental conflict between infrared stealth and thermal management, where suppressing thermal emission for camouflage inevitably causes detrimental heat accumulation, poses a long-standing challenge in modern military technology. This work resolves this paradox through a bottom-up design of a particle composite coating, where complex spectral selectivity is engineered at the single-particle level. We computationally designed and validated a multilayer spherical particle, consisting of a <i>C</i><i>a</i><i>M</i><i>g</i>(<i>C</i><i>O</i><sub>3</sub>)<sub>2</sub> shell, a <i>V</i><i>O</i><sub>2</sub> inner shell, and a Ge core, embedded within a polyethylene (PE) binder. The synergistic roles of the materials allow for precise spectral control: <i>C</i><i>a</i><i>M</i><i>g</i>(<i>C</i><i>O</i><sub>3</sub>)<sub>2</sub> provides a primary emission peak in the 6-7 µm range, <i>V</i><i>O</i><sub>2</sub> broadens this non-atmospheric window for enhanced heat dissipation, and the Ge layer simultaneously shields absorption in the infrared stealth bands and boosts absorption in the VIS-NIR spectrum. The optimized coating achieves a high average emissivity of 0.6471 in the VIS-NIR and 0.5091 in the 5-8 µm band for effective thermal radiation, while maintaining exceptionally low emissivity in the atmospheric window bands (SWIR: 0.2326, MWIR: 0.3208, and LWIR: 0.0915). Simulated thermal imaging demonstrates superior stealth performance. This coating offers a scalable and effective strategy for developing next-generation materials compatible with both multiband stealth and heat dissipation requirements.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 27\",\"pages\":\"8011-8018\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.574080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.574080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Composite coating with engineered microparticles for multiband infrared stealth and efficient radiative heat dissipation.
The fundamental conflict between infrared stealth and thermal management, where suppressing thermal emission for camouflage inevitably causes detrimental heat accumulation, poses a long-standing challenge in modern military technology. This work resolves this paradox through a bottom-up design of a particle composite coating, where complex spectral selectivity is engineered at the single-particle level. We computationally designed and validated a multilayer spherical particle, consisting of a CaMg(CO3)2 shell, a VO2 inner shell, and a Ge core, embedded within a polyethylene (PE) binder. The synergistic roles of the materials allow for precise spectral control: CaMg(CO3)2 provides a primary emission peak in the 6-7 µm range, VO2 broadens this non-atmospheric window for enhanced heat dissipation, and the Ge layer simultaneously shields absorption in the infrared stealth bands and boosts absorption in the VIS-NIR spectrum. The optimized coating achieves a high average emissivity of 0.6471 in the VIS-NIR and 0.5091 in the 5-8 µm band for effective thermal radiation, while maintaining exceptionally low emissivity in the atmospheric window bands (SWIR: 0.2326, MWIR: 0.3208, and LWIR: 0.0915). Simulated thermal imaging demonstrates superior stealth performance. This coating offers a scalable and effective strategy for developing next-generation materials compatible with both multiband stealth and heat dissipation requirements.