基于机器学习和立体视觉的振动频率测量。

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.567977
Jiantao Liu, Shenghui Liao, Beiji Zou, Li Li
{"title":"基于机器学习和立体视觉的振动频率测量。","authors":"Jiantao Liu, Shenghui Liao, Beiji Zou, Li Li","doi":"10.1364/AO.567977","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional vibration frequency measurement methods using stereo vision systems (SVS) often require explicit extraction of vibration signal time histories, rely on complex image processing algorithms, and depend on optical cues (e.g., markers or speckling) or techniques like edge and feature detection to track small movements on the target surface. These limitations increase implementation complexity and reduce adaptability to diverse scenarios. This paper introduces the SVS/ML method, a straightforward approach combining stereo vision techniques with machine learning (ML) for accurate and robust vibration frequency measurement. Unlike conventional methods, SVS/ML eliminates the need for explicit time history extraction and simplifies the tracking process. Experimental results comparing SVS/ML with reference methods employing industrial-grade sensors and known excitation sources demonstrate that the proposed method directly generates pixel-level vibration frequency maps with minimal error, achieving comparable accuracy to industrial-grade sensors. Moreover, SVS/ML exhibits strong robustness in both laboratory and field conditions, producing results that are ready-to-use without additional post-processing. These advantages make the method highly suitable for practical engineering applications, including structural health monitoring and machinery diagnostics.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7477-7491"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration frequency measurement based on machine learning and stereo vision.\",\"authors\":\"Jiantao Liu, Shenghui Liao, Beiji Zou, Li Li\",\"doi\":\"10.1364/AO.567977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional vibration frequency measurement methods using stereo vision systems (SVS) often require explicit extraction of vibration signal time histories, rely on complex image processing algorithms, and depend on optical cues (e.g., markers or speckling) or techniques like edge and feature detection to track small movements on the target surface. These limitations increase implementation complexity and reduce adaptability to diverse scenarios. This paper introduces the SVS/ML method, a straightforward approach combining stereo vision techniques with machine learning (ML) for accurate and robust vibration frequency measurement. Unlike conventional methods, SVS/ML eliminates the need for explicit time history extraction and simplifies the tracking process. Experimental results comparing SVS/ML with reference methods employing industrial-grade sensors and known excitation sources demonstrate that the proposed method directly generates pixel-level vibration frequency maps with minimal error, achieving comparable accuracy to industrial-grade sensors. Moreover, SVS/ML exhibits strong robustness in both laboratory and field conditions, producing results that are ready-to-use without additional post-processing. These advantages make the method highly suitable for practical engineering applications, including structural health monitoring and machinery diagnostics.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 25\",\"pages\":\"7477-7491\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.567977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.567977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用立体视觉系统(SVS)的传统振动频率测量方法通常需要明确提取振动信号时间历史,依赖于复杂的图像处理算法,并依赖于光线索(例如,标记或斑点)或边缘和特征检测等技术来跟踪目标表面上的小运动。这些限制增加了实现的复杂性,降低了对不同场景的适应性。本文介绍了SVS/ML方法,这是一种将立体视觉技术与机器学习(ML)相结合的简单方法,用于精确和鲁棒的振动频率测量。与传统方法不同,SVS/ML消除了对显式时间历史提取的需要,简化了跟踪过程。将SVS/ML与采用工业级传感器和已知激励源的参考方法进行比较的实验结果表明,该方法以最小的误差直接生成像素级振动频率图,达到与工业级传感器相当的精度。此外,SVS/ML在实验室和现场条件下都表现出很强的稳健性,产生的结果无需额外的后处理即可使用。这些优点使该方法非常适合实际工程应用,包括结构健康监测和机械诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration frequency measurement based on machine learning and stereo vision.

Traditional vibration frequency measurement methods using stereo vision systems (SVS) often require explicit extraction of vibration signal time histories, rely on complex image processing algorithms, and depend on optical cues (e.g., markers or speckling) or techniques like edge and feature detection to track small movements on the target surface. These limitations increase implementation complexity and reduce adaptability to diverse scenarios. This paper introduces the SVS/ML method, a straightforward approach combining stereo vision techniques with machine learning (ML) for accurate and robust vibration frequency measurement. Unlike conventional methods, SVS/ML eliminates the need for explicit time history extraction and simplifies the tracking process. Experimental results comparing SVS/ML with reference methods employing industrial-grade sensors and known excitation sources demonstrate that the proposed method directly generates pixel-level vibration frequency maps with minimal error, achieving comparable accuracy to industrial-grade sensors. Moreover, SVS/ML exhibits strong robustness in both laboratory and field conditions, producing results that are ready-to-use without additional post-processing. These advantages make the method highly suitable for practical engineering applications, including structural health monitoring and machinery diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信