基于时间复用迭代算法的量子化纯相位全息图生成。

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.570270
Huadong Zheng, Tengfei Zhang, Qiwei Fang, Xingyu Lin, Yingjie Yu
{"title":"基于时间复用迭代算法的量子化纯相位全息图生成。","authors":"Huadong Zheng, Tengfei Zhang, Qiwei Fang, Xingyu Lin, Yingjie Yu","doi":"10.1364/AO.570270","DOIUrl":null,"url":null,"abstract":"<p><p>Holographic display, as one of the most promising three-dimensional visualization technologies, faces dynamic advancement constraints due to the inherent trade-off between spatial light modulators refresh rates and holographic data volume. However, low-bit-depth solutions enable significantly higher refresh rates, thereby fulfilling the critical demand for dynamic display. This study proposes a quantized stochastic gradient descent iterative algorithm that enables direct-generation of 4-bit-depth phase-only holograms at 2K resolution. By implementing a differentiable quantization constraint, we successfully compress conventional 8-bit holograms to 4-bit depth while accelerating convergence through the same quantization strategy embedded in the initial random phase map. The time-multiplexing technique is employed to suppress quantization-induced speckle during reconstruction. Both numerical simulations and optical experiments demonstrate that quantized holograms perform better than traditional iterative algorithms in terms of reconstruction quality. This method provides an efficient solution for data-intensive applications including dynamic holographic displays and low-power holographic storage systems.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7430-7437"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantized phase-only hologram generation based on an iterative algorithm with time-multiplexing.\",\"authors\":\"Huadong Zheng, Tengfei Zhang, Qiwei Fang, Xingyu Lin, Yingjie Yu\",\"doi\":\"10.1364/AO.570270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Holographic display, as one of the most promising three-dimensional visualization technologies, faces dynamic advancement constraints due to the inherent trade-off between spatial light modulators refresh rates and holographic data volume. However, low-bit-depth solutions enable significantly higher refresh rates, thereby fulfilling the critical demand for dynamic display. This study proposes a quantized stochastic gradient descent iterative algorithm that enables direct-generation of 4-bit-depth phase-only holograms at 2K resolution. By implementing a differentiable quantization constraint, we successfully compress conventional 8-bit holograms to 4-bit depth while accelerating convergence through the same quantization strategy embedded in the initial random phase map. The time-multiplexing technique is employed to suppress quantization-induced speckle during reconstruction. Both numerical simulations and optical experiments demonstrate that quantized holograms perform better than traditional iterative algorithms in terms of reconstruction quality. This method provides an efficient solution for data-intensive applications including dynamic holographic displays and low-power holographic storage systems.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 25\",\"pages\":\"7430-7437\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.570270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.570270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于空间光调制器刷新率和全息数据量之间的内在权衡,全息显示作为最有前途的三维可视化技术之一,面临着动态发展的制约。然而,低位深解决方案可以显著提高刷新率,从而满足动态显示的关键需求。本研究提出了一种量化随机梯度下降迭代算法,可以直接生成2K分辨率的4位深度纯相位全息图。通过实现可微量化约束,我们成功地将传统的8位全息图压缩到4位深度,同时通过嵌入在初始随机相位图中的相同量化策略加速收敛。在重建过程中,采用时间复用技术抑制量化引起的散斑。数值模拟和光学实验均表明,量化全息图在重建质量方面优于传统迭代算法。该方法为动态全息显示和低功耗全息存储系统等数据密集型应用提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantized phase-only hologram generation based on an iterative algorithm with time-multiplexing.

Holographic display, as one of the most promising three-dimensional visualization technologies, faces dynamic advancement constraints due to the inherent trade-off between spatial light modulators refresh rates and holographic data volume. However, low-bit-depth solutions enable significantly higher refresh rates, thereby fulfilling the critical demand for dynamic display. This study proposes a quantized stochastic gradient descent iterative algorithm that enables direct-generation of 4-bit-depth phase-only holograms at 2K resolution. By implementing a differentiable quantization constraint, we successfully compress conventional 8-bit holograms to 4-bit depth while accelerating convergence through the same quantization strategy embedded in the initial random phase map. The time-multiplexing technique is employed to suppress quantization-induced speckle during reconstruction. Both numerical simulations and optical experiments demonstrate that quantized holograms perform better than traditional iterative algorithms in terms of reconstruction quality. This method provides an efficient solution for data-intensive applications including dynamic holographic displays and low-power holographic storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信