基于改进MKELM的红外锥形空间目标识别。

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.569034
Caiyun Wang, Jiaxuan Han, Yun Chang, Xiaofei Li, Yida Wu
{"title":"基于改进MKELM的红外锥形空间目标识别。","authors":"Caiyun Wang, Jiaxuan Han, Yun Chang, Xiaofei Li, Yida Wu","doi":"10.1364/AO.569034","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a novel infrared cone-shaped spatial target recognition method, to the best of our knowledge, based on an improved multiple kernel extreme learning machine (MKELM) for the problem that radiation intensity sequence is the only data type available and is often contaminated by noise at long-range detection. Variational mode decomposition (VMD) and reconstruction are incorporated for radiation intensity sequence. Then, the whale optimization algorithm (WOA) is used to optimize parameters, and target recognition is tested on a simulated infrared radiation intensity sequence dataset using improved MKELM. The experimental results verify the effectiveness of the method and show its enhanced recognition accuracy and robustness.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7578-7585"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared cone-shaped spatial target recognition based on an improved MKELM.\",\"authors\":\"Caiyun Wang, Jiaxuan Han, Yun Chang, Xiaofei Li, Yida Wu\",\"doi\":\"10.1364/AO.569034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a novel infrared cone-shaped spatial target recognition method, to the best of our knowledge, based on an improved multiple kernel extreme learning machine (MKELM) for the problem that radiation intensity sequence is the only data type available and is often contaminated by noise at long-range detection. Variational mode decomposition (VMD) and reconstruction are incorporated for radiation intensity sequence. Then, the whale optimization algorithm (WOA) is used to optimize parameters, and target recognition is tested on a simulated infrared radiation intensity sequence dataset using improved MKELM. The experimental results verify the effectiveness of the method and show its enhanced recognition accuracy and robustness.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 25\",\"pages\":\"7578-7585\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.569034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.569034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对辐射强度序列是唯一可用的数据类型,且在远程检测中经常受到噪声污染的问题,提出了一种基于改进多核极值学习机(MKELM)的红外锥形空间目标识别方法。对辐射强度序列进行了变分模态分解(VMD)和重构。然后,利用鲸鱼优化算法(WOA)对参数进行优化,并利用改进的MKELM算法在模拟红外辐射强度序列数据集上进行目标识别测试。实验结果验证了该方法的有效性,提高了识别精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared cone-shaped spatial target recognition based on an improved MKELM.

This paper proposes a novel infrared cone-shaped spatial target recognition method, to the best of our knowledge, based on an improved multiple kernel extreme learning machine (MKELM) for the problem that radiation intensity sequence is the only data type available and is often contaminated by noise at long-range detection. Variational mode decomposition (VMD) and reconstruction are incorporated for radiation intensity sequence. Then, the whale optimization algorithm (WOA) is used to optimize parameters, and target recognition is tested on a simulated infrared radiation intensity sequence dataset using improved MKELM. The experimental results verify the effectiveness of the method and show its enhanced recognition accuracy and robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信