通过深度学习优化的近红外和中红外应用超宽带超材料吸收器。

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.573376
Zhixin Cao, Xiaohui Zeng, Guoqiang Lan
{"title":"通过深度学习优化的近红外和中红外应用超宽带超材料吸收器。","authors":"Zhixin Cao, Xiaohui Zeng, Guoqiang Lan","doi":"10.1364/AO.573376","DOIUrl":null,"url":null,"abstract":"<p><p>Metamaterials, with their unique subwavelength-scale structures, enable exceptional control over electromagnetic properties, making them ideal for advanced optical devices. This study introduces a novel seven-layer metamaterial absorber, to our knowledge, designed for ultra-broadband absorption across the near-infrared to mid-infrared spectrum (2.3-7.5 µm). Comprising alternating titanium (Ti) and gallium arsenide (GaAs) layers, the absorber achieves an average absorptance of 97.8% and a peak absorptance of 99.8%. A deep neural network (DNN) optimizes structural parameters, ensuring high performance. The absorber's absorption mechanism, analyzed through electromagnetic field distributions, reveals contributions from localized surface plasmon resonance (LSPR), propagating surface plasmon resonance (PSPR), inter-ring coupling, and Fabry-Pérot resonances. The design exhibits robust performance, with insensitivity to incident and polarization angles up to 60° and 90°, respectively. Comparative analysis with recent infrared absorbers highlights its superior bandwidth and absorptance, positioning it as a promising candidate for applications in solar energy systems and infrared stealth technology.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7527-7533"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-broadband metamaterial absorber for near-infrared and mid-infrared applications optimized via deep learning.\",\"authors\":\"Zhixin Cao, Xiaohui Zeng, Guoqiang Lan\",\"doi\":\"10.1364/AO.573376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metamaterials, with their unique subwavelength-scale structures, enable exceptional control over electromagnetic properties, making them ideal for advanced optical devices. This study introduces a novel seven-layer metamaterial absorber, to our knowledge, designed for ultra-broadband absorption across the near-infrared to mid-infrared spectrum (2.3-7.5 µm). Comprising alternating titanium (Ti) and gallium arsenide (GaAs) layers, the absorber achieves an average absorptance of 97.8% and a peak absorptance of 99.8%. A deep neural network (DNN) optimizes structural parameters, ensuring high performance. The absorber's absorption mechanism, analyzed through electromagnetic field distributions, reveals contributions from localized surface plasmon resonance (LSPR), propagating surface plasmon resonance (PSPR), inter-ring coupling, and Fabry-Pérot resonances. The design exhibits robust performance, with insensitivity to incident and polarization angles up to 60° and 90°, respectively. Comparative analysis with recent infrared absorbers highlights its superior bandwidth and absorptance, positioning it as a promising candidate for applications in solar energy systems and infrared stealth technology.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 25\",\"pages\":\"7527-7533\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.573376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.573376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超材料具有独特的亚波长尺度结构,能够对电磁特性进行特殊控制,使其成为先进光学器件的理想选择。本研究介绍了一种新型的七层超材料吸收器,据我们所知,设计用于近红外到中红外光谱(2.3-7.5µm)的超宽带吸收。吸收剂由钛(Ti)和砷化镓(GaAs)交替层组成,平均吸光度为97.8%,峰值吸光度为99.8%。深度神经网络(DNN)优化结构参数,确保高性能。通过电磁场分布分析吸收器的吸收机理,揭示了局域表面等离子体共振(LSPR)、传播表面等离子体共振(PSPR)、环间耦合和fabry - psamro共振的贡献。该设计具有强大的性能,对入射角和偏振角分别为60°和90°不敏感。与最近的红外吸收器的比较分析突出了其优越的带宽和吸收率,使其成为太阳能系统和红外隐身技术应用的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-broadband metamaterial absorber for near-infrared and mid-infrared applications optimized via deep learning.

Metamaterials, with their unique subwavelength-scale structures, enable exceptional control over electromagnetic properties, making them ideal for advanced optical devices. This study introduces a novel seven-layer metamaterial absorber, to our knowledge, designed for ultra-broadband absorption across the near-infrared to mid-infrared spectrum (2.3-7.5 µm). Comprising alternating titanium (Ti) and gallium arsenide (GaAs) layers, the absorber achieves an average absorptance of 97.8% and a peak absorptance of 99.8%. A deep neural network (DNN) optimizes structural parameters, ensuring high performance. The absorber's absorption mechanism, analyzed through electromagnetic field distributions, reveals contributions from localized surface plasmon resonance (LSPR), propagating surface plasmon resonance (PSPR), inter-ring coupling, and Fabry-Pérot resonances. The design exhibits robust performance, with insensitivity to incident and polarization angles up to 60° and 90°, respectively. Comparative analysis with recent infrared absorbers highlights its superior bandwidth and absorptance, positioning it as a promising candidate for applications in solar energy systems and infrared stealth technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信