csa - asp - net:结合通道空间关注和空间金字塔卷积的端到端激光条纹中心线提取。

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.570244
Bicheng Yuan, Weiquan Mo, Zhenxin He, Wei Tan, Liangchang Zou, Zhigang Yang, Liang Mei, Kun Liu, Hao Sun
{"title":"csa - asp - net:结合通道空间关注和空间金字塔卷积的端到端激光条纹中心线提取。","authors":"Bicheng Yuan, Weiquan Mo, Zhenxin He, Wei Tan, Liangchang Zou, Zhigang Yang, Liang Mei, Kun Liu, Hao Sun","doi":"10.1364/AO.570244","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an end-to-end laser stripe centerline extraction model, CSA-ASPP-Net, which enables direct mapping from raw laser stripe images to high-precision sub-pixel centerlines through the integrated design of atrous spatial pyramid pooling (ASPP) and channel-spatial attention (CBAM). Our model addresses the limitations of traditional methods, which rely heavily on manually designed features, as well as existing deep learning approaches, which require segmentation-extraction centerlines. By innovatively integrating attention-guided feature enhancement and multi-scale contextual perception modules into an encoder-decoder architecture, the proposed model enables single-stage completion of stripe localization and refinement. The experimental results demonstrate that this end-to-end framework achieves a precision of 94.85% and an average localization error of 0.64 pixels in test images, with a processing speed of 0.15 s per image, highlighting its computational efficiency. The results demonstrate that the CBAM module effectively mitigates background interference by emphasizing salient features, while the ASPP module enhances adaptability to various stripe morphologies through its multi-scale capability. This research provides an innovative and integrated solution tailored for structured light measurement systems, combining efficiency with high precision in laser stripe processing.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7438-7448"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSA-ASPP-Net: end-to-end laser stripe centerline extraction with joint channel-spatial attention and atrous spatial pyramid convolution.\",\"authors\":\"Bicheng Yuan, Weiquan Mo, Zhenxin He, Wei Tan, Liangchang Zou, Zhigang Yang, Liang Mei, Kun Liu, Hao Sun\",\"doi\":\"10.1364/AO.570244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an end-to-end laser stripe centerline extraction model, CSA-ASPP-Net, which enables direct mapping from raw laser stripe images to high-precision sub-pixel centerlines through the integrated design of atrous spatial pyramid pooling (ASPP) and channel-spatial attention (CBAM). Our model addresses the limitations of traditional methods, which rely heavily on manually designed features, as well as existing deep learning approaches, which require segmentation-extraction centerlines. By innovatively integrating attention-guided feature enhancement and multi-scale contextual perception modules into an encoder-decoder architecture, the proposed model enables single-stage completion of stripe localization and refinement. The experimental results demonstrate that this end-to-end framework achieves a precision of 94.85% and an average localization error of 0.64 pixels in test images, with a processing speed of 0.15 s per image, highlighting its computational efficiency. The results demonstrate that the CBAM module effectively mitigates background interference by emphasizing salient features, while the ASPP module enhances adaptability to various stripe morphologies through its multi-scale capability. This research provides an innovative and integrated solution tailored for structured light measurement systems, combining efficiency with high precision in laser stripe processing.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 25\",\"pages\":\"7438-7448\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.570244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.570244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了端到端激光条纹中心线提取模型CSA-ASPP-Net,该模型通过空间金字塔池(ASPP)和通道空间注意(CBAM)的集成设计,实现了从原始激光条纹图像到高精度亚像素中心线的直接映射。我们的模型解决了传统方法的局限性,传统方法严重依赖人工设计的特征,以及现有的深度学习方法,需要分割提取中心线。通过创新地将注意力引导特征增强和多尺度上下文感知模块集成到编码器-解码器架构中,所提出的模型可以单阶段完成条纹定位和细化。实验结果表明,该端到端框架在测试图像中的定位精度为94.85%,平均定位误差为0.64像素,处理速度为每张图像0.15 s,计算效率高。结果表明,CBAM模块通过突出显著特征有效地减轻背景干扰,而ASPP模块通过其多尺度能力增强了对各种条纹形态的适应性。该研究为结构光测量系统提供了一种创新的集成解决方案,结合了激光条纹加工的效率和高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CSA-ASPP-Net: end-to-end laser stripe centerline extraction with joint channel-spatial attention and atrous spatial pyramid convolution.

This study presents an end-to-end laser stripe centerline extraction model, CSA-ASPP-Net, which enables direct mapping from raw laser stripe images to high-precision sub-pixel centerlines through the integrated design of atrous spatial pyramid pooling (ASPP) and channel-spatial attention (CBAM). Our model addresses the limitations of traditional methods, which rely heavily on manually designed features, as well as existing deep learning approaches, which require segmentation-extraction centerlines. By innovatively integrating attention-guided feature enhancement and multi-scale contextual perception modules into an encoder-decoder architecture, the proposed model enables single-stage completion of stripe localization and refinement. The experimental results demonstrate that this end-to-end framework achieves a precision of 94.85% and an average localization error of 0.64 pixels in test images, with a processing speed of 0.15 s per image, highlighting its computational efficiency. The results demonstrate that the CBAM module effectively mitigates background interference by emphasizing salient features, while the ASPP module enhances adaptability to various stripe morphologies through its multi-scale capability. This research provides an innovative and integrated solution tailored for structured light measurement systems, combining efficiency with high precision in laser stripe processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信