深度学习中基于频域信息的医学图像分辨率增强与目标分割。

Applied optics Pub Date : 2025-08-20 DOI:10.1364/AO.557903
Gangshan Liu, Qi Li, Yiran Wang, Xuyang Zhou, Yutong Li, Yuxin Liu, Xiaomei Li, Zhengjun Liu
{"title":"深度学习中基于频域信息的医学图像分辨率增强与目标分割。","authors":"Gangshan Liu, Qi Li, Yiran Wang, Xuyang Zhou, Yutong Li, Yuxin Liu, Xiaomei Li, Zhengjun Liu","doi":"10.1364/AO.557903","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer has become a major threat to human health, with precise cellular morphology analysis critical for diagnosis and grading. Deep learning-based automatic cell segmentation is emerging as a key tool in computer-aided pathology. However, distortion and blur in digital pathology images often degrade segmentation model performance. To address this, we propose the frequency-domain resolution network, which maps images to the frequency domain, processes amplitude and phase information independently, and employs a fusion strategy to restore clear images. This approach surpasses traditional spatial-domain methods, enhancing image detail and structural feature restoration. Using these generated images, we perform nucleus extraction and segmentation, incorporating a pyramid pooling module to optimize accuracy. Experimental results show our method achieves superior resolution-enhancement reconstruction and cell segmentation, demonstrating significant potential and academic value.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 24","pages":"7083-7092"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolution enhancement and target segmentation of medical images based on the frequency-domain information in deep learning.\",\"authors\":\"Gangshan Liu, Qi Li, Yiran Wang, Xuyang Zhou, Yutong Li, Yuxin Liu, Xiaomei Li, Zhengjun Liu\",\"doi\":\"10.1364/AO.557903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer has become a major threat to human health, with precise cellular morphology analysis critical for diagnosis and grading. Deep learning-based automatic cell segmentation is emerging as a key tool in computer-aided pathology. However, distortion and blur in digital pathology images often degrade segmentation model performance. To address this, we propose the frequency-domain resolution network, which maps images to the frequency domain, processes amplitude and phase information independently, and employs a fusion strategy to restore clear images. This approach surpasses traditional spatial-domain methods, enhancing image detail and structural feature restoration. Using these generated images, we perform nucleus extraction and segmentation, incorporating a pyramid pooling module to optimize accuracy. Experimental results show our method achieves superior resolution-enhancement reconstruction and cell segmentation, demonstrating significant potential and academic value.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":\"64 24\",\"pages\":\"7083-7092\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.557903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.557903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症已成为人类健康的主要威胁,精确的细胞形态分析对诊断和分级至关重要。基于深度学习的自动细胞分割正在成为计算机辅助病理学的关键工具。然而,数字病理图像中的失真和模糊往往会降低分割模型的性能。为了解决这个问题,我们提出了频域分辨率网络,该网络将图像映射到频域,独立处理幅度和相位信息,并采用融合策略恢复清晰的图像。该方法超越了传统的空间域方法,增强了图像细节和结构特征的恢复。使用这些生成的图像,我们进行核提取和分割,并结合金字塔池模块来优化准确性。实验结果表明,该方法具有较好的分辨率增强重建和细胞分割效果,具有较大的应用潜力和学术价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolution enhancement and target segmentation of medical images based on the frequency-domain information in deep learning.

Cancer has become a major threat to human health, with precise cellular morphology analysis critical for diagnosis and grading. Deep learning-based automatic cell segmentation is emerging as a key tool in computer-aided pathology. However, distortion and blur in digital pathology images often degrade segmentation model performance. To address this, we propose the frequency-domain resolution network, which maps images to the frequency domain, processes amplitude and phase information independently, and employs a fusion strategy to restore clear images. This approach surpasses traditional spatial-domain methods, enhancing image detail and structural feature restoration. Using these generated images, we perform nucleus extraction and segmentation, incorporating a pyramid pooling module to optimize accuracy. Experimental results show our method achieves superior resolution-enhancement reconstruction and cell segmentation, demonstrating significant potential and academic value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信