基于表面和形状信息的u型光纤分层鲁棒浅层白质连通性分析。

Yuan Li, Xinyu Nie, Jianwei Zhang, Yonggang Shi
{"title":"基于表面和形状信息的u型光纤分层鲁棒浅层白质连通性分析。","authors":"Yuan Li, Xinyu Nie, Jianwei Zhang, Yonggang Shi","doi":"10.1007/978-3-031-72069-7_40","DOIUrl":null,"url":null,"abstract":"<p><p>Superficial white matter (SWM) U-fibers contain considerable structural connectivity in the human brain; however, related studies are not well-developed compared to the well-studied deep white matter (DWM). Conventionally, SWM U-fiber is obtained through DWM tracking, which is inaccurate on the cortical surface. The significant variability in the cortical folding patterns of the human brain renders a conventional template-based atlas unsuitable for accurately mapping U-fibers within the thin layer of SWM beneath the cortical surface. Recently, new surface-based tracking methods have been developed to reconstruct more complete and reliable U-fibers. To leverage surface-based U-fiber tracking methods, we propose to create a surface-based U-fiber dictionary using high-resolution diffusion MRI (dMRI) data from the Human Connectome Project (HCP). We first identify the major U-fiber bundles and then build a dictionary containing subjects with high groupwise consistency of major U-fiber bundles. Finally, we propose a shape-informed U-fiber atlasing method for robust SWM connectivity analysis. Through experiments, we demonstrate that our shape-informed atlasing method can obtain anatomically more accurate U-fiber representations than state-of-the-art atlas. Additionally, our method is capable of restoring incomplete U-fibers in low-resolution dMRI, thus helping better characterize SWM connectivity in clinical studies such as the Alzheimer's Disease Neuroimaging Initiative (ADNI).</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15002 ","pages":"422-432"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448713/pdf/","citationCount":"0","resultStr":"{\"title\":\"Surface-based and Shape-informed U-fiber Atlasing for Robust Superficial White Matter Connectivity Analysis.\",\"authors\":\"Yuan Li, Xinyu Nie, Jianwei Zhang, Yonggang Shi\",\"doi\":\"10.1007/978-3-031-72069-7_40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Superficial white matter (SWM) U-fibers contain considerable structural connectivity in the human brain; however, related studies are not well-developed compared to the well-studied deep white matter (DWM). Conventionally, SWM U-fiber is obtained through DWM tracking, which is inaccurate on the cortical surface. The significant variability in the cortical folding patterns of the human brain renders a conventional template-based atlas unsuitable for accurately mapping U-fibers within the thin layer of SWM beneath the cortical surface. Recently, new surface-based tracking methods have been developed to reconstruct more complete and reliable U-fibers. To leverage surface-based U-fiber tracking methods, we propose to create a surface-based U-fiber dictionary using high-resolution diffusion MRI (dMRI) data from the Human Connectome Project (HCP). We first identify the major U-fiber bundles and then build a dictionary containing subjects with high groupwise consistency of major U-fiber bundles. Finally, we propose a shape-informed U-fiber atlasing method for robust SWM connectivity analysis. Through experiments, we demonstrate that our shape-informed atlasing method can obtain anatomically more accurate U-fiber representations than state-of-the-art atlas. Additionally, our method is capable of restoring incomplete U-fibers in low-resolution dMRI, thus helping better characterize SWM connectivity in clinical studies such as the Alzheimer's Disease Neuroimaging Initiative (ADNI).</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"15002 \",\"pages\":\"422-432\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448713/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-72069-7_40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-72069-7_40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

浅表白质(SWM) u -纤维在人脑中包含大量的结构连接;然而,与深度白质(DWM)相比,相关研究并不发达。传统的SWM u -光纤是通过DWM跟踪获得的,在皮质表面是不准确的。人类大脑皮层折叠模式的显著可变性使得传统的基于模板的图谱不适合精确地绘制皮层表面下SWM薄层内的u -纤维。最近,新的基于表面的跟踪方法被开发出来,以重建更完整和可靠的u -纤维。为了利用基于表面的u -纤维跟踪方法,我们建议使用来自人类连接组计划(HCP)的高分辨率扩散MRI (dMRI)数据创建一个基于表面的u -纤维字典。我们首先对主要的U-fiber束进行了识别,然后建立了包含主要的U-fiber束具有高群一致性的主题的字典。最后,我们提出了一种形状知情的u型光纤atlasing方法,用于稳健的SWM连通性分析。通过实验,我们证明了我们的形状信息图谱方法可以获得比最先进的图谱更准确的解剖学u -纤维表征。此外,我们的方法能够在低分辨率dMRI中恢复不完整的u -纤维,从而有助于在阿尔茨海默病神经成像倡议(ADNI)等临床研究中更好地表征SWM连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface-based and Shape-informed U-fiber Atlasing for Robust Superficial White Matter Connectivity Analysis.

Superficial white matter (SWM) U-fibers contain considerable structural connectivity in the human brain; however, related studies are not well-developed compared to the well-studied deep white matter (DWM). Conventionally, SWM U-fiber is obtained through DWM tracking, which is inaccurate on the cortical surface. The significant variability in the cortical folding patterns of the human brain renders a conventional template-based atlas unsuitable for accurately mapping U-fibers within the thin layer of SWM beneath the cortical surface. Recently, new surface-based tracking methods have been developed to reconstruct more complete and reliable U-fibers. To leverage surface-based U-fiber tracking methods, we propose to create a surface-based U-fiber dictionary using high-resolution diffusion MRI (dMRI) data from the Human Connectome Project (HCP). We first identify the major U-fiber bundles and then build a dictionary containing subjects with high groupwise consistency of major U-fiber bundles. Finally, we propose a shape-informed U-fiber atlasing method for robust SWM connectivity analysis. Through experiments, we demonstrate that our shape-informed atlasing method can obtain anatomically more accurate U-fiber representations than state-of-the-art atlas. Additionally, our method is capable of restoring incomplete U-fibers in low-resolution dMRI, thus helping better characterize SWM connectivity in clinical studies such as the Alzheimer's Disease Neuroimaging Initiative (ADNI).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信