CLUEY能够从单细胞组学数据中实现知识引导的聚类和细胞类型检测。

IF 5.4
Daniel Kim, Carissa Chen, Lijia Yu, Jean Yee Hwa Yang, Pengyi Yang
{"title":"CLUEY能够从单细胞组学数据中实现知识引导的聚类和细胞类型检测。","authors":"Daniel Kim, Carissa Chen, Lijia Yu, Jean Yee Hwa Yang, Pengyi Yang","doi":"10.1093/bioinformatics/btaf528","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Clustering is a fundamental task in single-cell omics data analysis and can significantly impact downstream analyses and biological interpretations. The standard approach involves grouping cells based on their gene expression profiles, followed by annotating each cluster to a cell type using marker genes. However, the number of cell types detected by different clustering methods can vary substantially due to several factors, including the dimension reduction method used and the choice of parameters of the chosen clustering algorithm. These discrepancies can lead to subjective interpretations in downstream analyses, particularly in manual cell type annotation.</p><p><strong>Results: </strong>To address these challenges, we propose CLUEY, a knowledge-guided framework for cell type detection and clustering of single-cell omics data. CLUEY integrates prior biological knowledge into the clustering process, providing guidance on the optimal number of clusters and enhancing the interpretability of results. We apply CLUEY to both unimodal (e.g. scRNA-seq, scATAC-seq) and multimodal datasets (e.g. CITE-seq, SHARE-seq) and demonstrate its effectiveness in providing biologically meaningful clustering outcomes. These results highlight CLUEY on providing the much-needed guidance in clustering analyses of single-cell omics data.</p><p><strong>Availability and implementation: </strong>CLUEY package is freely available from https://github.com/SydneyBioX/CLUEY.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506888/pdf/","citationCount":"0","resultStr":"{\"title\":\"CLUEY enables knowledge-guided clustering and cell type detection from single-cell omics data.\",\"authors\":\"Daniel Kim, Carissa Chen, Lijia Yu, Jean Yee Hwa Yang, Pengyi Yang\",\"doi\":\"10.1093/bioinformatics/btaf528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Clustering is a fundamental task in single-cell omics data analysis and can significantly impact downstream analyses and biological interpretations. The standard approach involves grouping cells based on their gene expression profiles, followed by annotating each cluster to a cell type using marker genes. However, the number of cell types detected by different clustering methods can vary substantially due to several factors, including the dimension reduction method used and the choice of parameters of the chosen clustering algorithm. These discrepancies can lead to subjective interpretations in downstream analyses, particularly in manual cell type annotation.</p><p><strong>Results: </strong>To address these challenges, we propose CLUEY, a knowledge-guided framework for cell type detection and clustering of single-cell omics data. CLUEY integrates prior biological knowledge into the clustering process, providing guidance on the optimal number of clusters and enhancing the interpretability of results. We apply CLUEY to both unimodal (e.g. scRNA-seq, scATAC-seq) and multimodal datasets (e.g. CITE-seq, SHARE-seq) and demonstrate its effectiveness in providing biologically meaningful clustering outcomes. These results highlight CLUEY on providing the much-needed guidance in clustering analyses of single-cell omics data.</p><p><strong>Availability and implementation: </strong>CLUEY package is freely available from https://github.com/SydneyBioX/CLUEY.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:聚类是单细胞组学数据分析的基本任务,可以显著影响下游分析和生物学解释。标准方法包括根据细胞的基因表达谱对细胞进行分组,然后使用标记基因将每个细胞簇注释为细胞类型。然而,由于使用的降维方法和所选聚类算法的参数选择等因素,不同聚类方法检测到的细胞类型数量可能会有很大差异。这些差异可能导致下游分析中的主观解释,特别是在手工细胞类型注释中。为了解决这些挑战,我们提出了CLUEY,这是一个知识引导的框架,用于细胞类型检测和单细胞组学数据的聚类。CLUEY将先前的生物学知识整合到聚类过程中,为最佳聚类数量提供指导,并增强结果的可解释性。我们将CLUEY应用于单峰数据集(例如scRNA-seq, scATAC-seq)和多峰数据集(例如CITE-seq, SHARE-seq),并证明其在提供具有生物学意义的聚类结果方面的有效性。这些结果突出了CLUEY为单细胞组学数据的聚类分析提供了急需的指导。可用性和实施:CLUEY软件包可从https://github.com/SydneyBioX/CLUEY.Supplementary信息免费获得;补充数据可在Bioinformatics在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLUEY enables knowledge-guided clustering and cell type detection from single-cell omics data.

Motivation: Clustering is a fundamental task in single-cell omics data analysis and can significantly impact downstream analyses and biological interpretations. The standard approach involves grouping cells based on their gene expression profiles, followed by annotating each cluster to a cell type using marker genes. However, the number of cell types detected by different clustering methods can vary substantially due to several factors, including the dimension reduction method used and the choice of parameters of the chosen clustering algorithm. These discrepancies can lead to subjective interpretations in downstream analyses, particularly in manual cell type annotation.

Results: To address these challenges, we propose CLUEY, a knowledge-guided framework for cell type detection and clustering of single-cell omics data. CLUEY integrates prior biological knowledge into the clustering process, providing guidance on the optimal number of clusters and enhancing the interpretability of results. We apply CLUEY to both unimodal (e.g. scRNA-seq, scATAC-seq) and multimodal datasets (e.g. CITE-seq, SHARE-seq) and demonstrate its effectiveness in providing biologically meaningful clustering outcomes. These results highlight CLUEY on providing the much-needed guidance in clustering analyses of single-cell omics data.

Availability and implementation: CLUEY package is freely available from https://github.com/SydneyBioX/CLUEY.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信