TVAE-RNA:基于集成的RNA二级结构预测,通过变压器变分自编码器。

IF 5.4
Xiyuan Mei, Hanbo Liu, Yuheng Zhu, Enshuang Zhao, Longyi Li, Hao Zhang
{"title":"TVAE-RNA:基于集成的RNA二级结构预测,通过变压器变分自编码器。","authors":"Xiyuan Mei, Hanbo Liu, Yuheng Zhu, Enshuang Zhao, Longyi Li, Hao Zhang","doi":"10.1093/bioinformatics/btaf527","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Accurate prediction of RNA secondary structure remains challenging due to the presence of pseudoknots, long-range dependencies, and limited labeled data.</p><p><strong>Results: </strong>We propose TVAE, a novel framework that integrates a Transformer encoder with a Variational Autoencoder (VAE). The Transformer captures global dependencies in the sequence, while the VAE models structural variability by learning a probabilistic latent space. Unlike deterministic models, TVAE generates diverse and biologically plausible secondary structures, enabling more comprehensive structure discovery. To obtain discrete predictions, we introduce GHA-Pairing, a fast and biologically constrained base-pairing algorithm. TVAE demonstrates strong generalization across different RNA families and achieves state-of-the-art performance on benchmark datasets, reaching an F1 score of 0.89 and 83% accuracy, surpassing existing methods by 10%. These results highlight the advantage of probabilistic modeling for RNA structure prediction and its potential to enhance biological insights.</p><p><strong>Availability and impiementation: </strong>Code and pretrained models are available at https://github.com/mei-rna/TVAE-RNA.The released version of the dataset and models can also be accessed via DOI: 10.5281/zenodo.16946114.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TVAE-RNA: Ensemble-Based RNA Secondary Structure Prediction via Transformer Variational Autoencoders.\",\"authors\":\"Xiyuan Mei, Hanbo Liu, Yuheng Zhu, Enshuang Zhao, Longyi Li, Hao Zhang\",\"doi\":\"10.1093/bioinformatics/btaf527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Accurate prediction of RNA secondary structure remains challenging due to the presence of pseudoknots, long-range dependencies, and limited labeled data.</p><p><strong>Results: </strong>We propose TVAE, a novel framework that integrates a Transformer encoder with a Variational Autoencoder (VAE). The Transformer captures global dependencies in the sequence, while the VAE models structural variability by learning a probabilistic latent space. Unlike deterministic models, TVAE generates diverse and biologically plausible secondary structures, enabling more comprehensive structure discovery. To obtain discrete predictions, we introduce GHA-Pairing, a fast and biologically constrained base-pairing algorithm. TVAE demonstrates strong generalization across different RNA families and achieves state-of-the-art performance on benchmark datasets, reaching an F1 score of 0.89 and 83% accuracy, surpassing existing methods by 10%. These results highlight the advantage of probabilistic modeling for RNA structure prediction and its potential to enhance biological insights.</p><p><strong>Availability and impiementation: </strong>Code and pretrained models are available at https://github.com/mei-rna/TVAE-RNA.The released version of the dataset and models can also be accessed via DOI: 10.5281/zenodo.16946114.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:由于存在假结、远程依赖和有限的标记数据,准确预测RNA二级结构仍然具有挑战性。结果:我们提出了TVAE,一个集成了变压器编码器和变分自编码器(VAE)的新框架。Transformer捕获序列中的全局依赖性,而VAE通过学习概率潜在空间对结构可变性进行建模。与确定性模型不同,TVAE生成了多种多样且生物学上合理的二级结构,从而能够更全面地发现结构。为了获得离散预测,我们引入了一种快速的生物约束碱基配对算法ga -pairing。TVAE在不同的RNA家族中表现出很强的泛化能力,并在基准数据集上取得了最先进的性能,达到了0.89的F1分数和83%的准确率,比现有方法高出10%。这些结果突出了RNA结构预测的概率建模的优势及其增强生物学见解的潜力。可用性和实现:代码和预训练模型可在https://github.com/mei-rna/TVAE-RNA.The发布版本的数据集上获得,模型也可以通过DOI: 10.5281/zenodo.16946114访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TVAE-RNA: Ensemble-Based RNA Secondary Structure Prediction via Transformer Variational Autoencoders.

Motivation: Accurate prediction of RNA secondary structure remains challenging due to the presence of pseudoknots, long-range dependencies, and limited labeled data.

Results: We propose TVAE, a novel framework that integrates a Transformer encoder with a Variational Autoencoder (VAE). The Transformer captures global dependencies in the sequence, while the VAE models structural variability by learning a probabilistic latent space. Unlike deterministic models, TVAE generates diverse and biologically plausible secondary structures, enabling more comprehensive structure discovery. To obtain discrete predictions, we introduce GHA-Pairing, a fast and biologically constrained base-pairing algorithm. TVAE demonstrates strong generalization across different RNA families and achieves state-of-the-art performance on benchmark datasets, reaching an F1 score of 0.89 and 83% accuracy, surpassing existing methods by 10%. These results highlight the advantage of probabilistic modeling for RNA structure prediction and its potential to enhance biological insights.

Availability and impiementation: Code and pretrained models are available at https://github.com/mei-rna/TVAE-RNA.The released version of the dataset and models can also be accessed via DOI: 10.5281/zenodo.16946114.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信