{"title":"蛋白质切割器:一个交互式网络界面,用于蛋白质消化衍生肽的计算机预测和系统注释。","authors":"Grigorios Koulouras, Yingrong Xu","doi":"10.3389/fbinf.2025.1576317","DOIUrl":null,"url":null,"abstract":"<p><p>Proteolytic digestion is an essential process in mass spectrometry-based proteomics for converting proteins into peptides, hence crucial for protein identification and quantification. In a typical proteomics experiment, digestion reagents are selected without prior evaluation of their optimality for detecting proteins or peptides of interest, partly due to the lack of comprehensive and user-friendly predictive tools. In this work, we introduce Protein Cleaver, a web-based application that systematically assesses regions of proteins that are likely or unlikely to be identified, along with extensive sequence and structure annotation and visualization features. We showcase practical examples of Protein Cleaver's usability in drug discovery and highlight proteins that are typically difficult to detect using the most common proteolytic enzymes. We evaluate trypsin and chymotrypsin for identifying G-protein-coupled receptors and discover that chymotrypsin produces significantly more identifiable peptides than trypsin. We perform a bulk digestion analysis and assess 36 proteolytic enzymes for their ability to detect most of cysteine-containing peptides in the human proteome. We anticipate Protein Cleaver to be a valuable auxiliary tool for proteomics scientists.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1576317"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445168/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein cleaver: an interactive web interface for <i>in silico</i> prediction and systematic annotation of protein digestion-derived peptides.\",\"authors\":\"Grigorios Koulouras, Yingrong Xu\",\"doi\":\"10.3389/fbinf.2025.1576317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteolytic digestion is an essential process in mass spectrometry-based proteomics for converting proteins into peptides, hence crucial for protein identification and quantification. In a typical proteomics experiment, digestion reagents are selected without prior evaluation of their optimality for detecting proteins or peptides of interest, partly due to the lack of comprehensive and user-friendly predictive tools. In this work, we introduce Protein Cleaver, a web-based application that systematically assesses regions of proteins that are likely or unlikely to be identified, along with extensive sequence and structure annotation and visualization features. We showcase practical examples of Protein Cleaver's usability in drug discovery and highlight proteins that are typically difficult to detect using the most common proteolytic enzymes. We evaluate trypsin and chymotrypsin for identifying G-protein-coupled receptors and discover that chymotrypsin produces significantly more identifiable peptides than trypsin. We perform a bulk digestion analysis and assess 36 proteolytic enzymes for their ability to detect most of cysteine-containing peptides in the human proteome. We anticipate Protein Cleaver to be a valuable auxiliary tool for proteomics scientists.</p>\",\"PeriodicalId\":73066,\"journal\":{\"name\":\"Frontiers in bioinformatics\",\"volume\":\"5 \",\"pages\":\"1576317\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbinf.2025.1576317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1576317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Protein cleaver: an interactive web interface for in silico prediction and systematic annotation of protein digestion-derived peptides.
Proteolytic digestion is an essential process in mass spectrometry-based proteomics for converting proteins into peptides, hence crucial for protein identification and quantification. In a typical proteomics experiment, digestion reagents are selected without prior evaluation of their optimality for detecting proteins or peptides of interest, partly due to the lack of comprehensive and user-friendly predictive tools. In this work, we introduce Protein Cleaver, a web-based application that systematically assesses regions of proteins that are likely or unlikely to be identified, along with extensive sequence and structure annotation and visualization features. We showcase practical examples of Protein Cleaver's usability in drug discovery and highlight proteins that are typically difficult to detect using the most common proteolytic enzymes. We evaluate trypsin and chymotrypsin for identifying G-protein-coupled receptors and discover that chymotrypsin produces significantly more identifiable peptides than trypsin. We perform a bulk digestion analysis and assess 36 proteolytic enzymes for their ability to detect most of cysteine-containing peptides in the human proteome. We anticipate Protein Cleaver to be a valuable auxiliary tool for proteomics scientists.