Anthony McCofie, Abhiram Kandiyana, Peter R Mouton, Yu Sun, Dmitry Goldgof
{"title":"基于视觉语言模型的短时提示婴儿哭声疼痛分类。","authors":"Anthony McCofie, Abhiram Kandiyana, Peter R Mouton, Yu Sun, Dmitry Goldgof","doi":"10.1109/cbms65348.2025.00174","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately detecting pain in infants remains a complex challenge. Conventional deep neural networks used for analyzing infant cry sounds typically demand large labeled datasets, substantial computational power, and often lack interpretability. In this work, we introduce a novel approach that leverages OpenAI's vision-language model, GPT-4(V), combined with mel spectrogram-based representations of infant cries through prompting. This prompting strategy significantly reduces the dependence on large training datasets while enhancing transparency and interpretability. Using the USF-MNPAD-II dataset, our method achieves an accuracy of 83.33% with only 16 training samples, in contrast to the 4,914 samples required in the baseline model. To our knowledge, this represents the first application of few-shot prompting with vision-language models such as GPT-4o for infant pain classification.</p>","PeriodicalId":74567,"journal":{"name":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","volume":"2025 ","pages":"857-862"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444757/pdf/","citationCount":"0","resultStr":"{\"title\":\"Few-Shot Prompting with Vision Language Model for Pain Classification in Infant Cry Sounds.\",\"authors\":\"Anthony McCofie, Abhiram Kandiyana, Peter R Mouton, Yu Sun, Dmitry Goldgof\",\"doi\":\"10.1109/cbms65348.2025.00174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately detecting pain in infants remains a complex challenge. Conventional deep neural networks used for analyzing infant cry sounds typically demand large labeled datasets, substantial computational power, and often lack interpretability. In this work, we introduce a novel approach that leverages OpenAI's vision-language model, GPT-4(V), combined with mel spectrogram-based representations of infant cries through prompting. This prompting strategy significantly reduces the dependence on large training datasets while enhancing transparency and interpretability. Using the USF-MNPAD-II dataset, our method achieves an accuracy of 83.33% with only 16 training samples, in contrast to the 4,914 samples required in the baseline model. To our knowledge, this represents the first application of few-shot prompting with vision-language models such as GPT-4o for infant pain classification.</p>\",\"PeriodicalId\":74567,\"journal\":{\"name\":\"Proceedings. IEEE International Symposium on Computer-Based Medical Systems\",\"volume\":\"2025 \",\"pages\":\"857-862\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cbms65348.2025.00174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cbms65348.2025.00174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Few-Shot Prompting with Vision Language Model for Pain Classification in Infant Cry Sounds.
Accurately detecting pain in infants remains a complex challenge. Conventional deep neural networks used for analyzing infant cry sounds typically demand large labeled datasets, substantial computational power, and often lack interpretability. In this work, we introduce a novel approach that leverages OpenAI's vision-language model, GPT-4(V), combined with mel spectrogram-based representations of infant cries through prompting. This prompting strategy significantly reduces the dependence on large training datasets while enhancing transparency and interpretability. Using the USF-MNPAD-II dataset, our method achieves an accuracy of 83.33% with only 16 training samples, in contrast to the 4,914 samples required in the baseline model. To our knowledge, this represents the first application of few-shot prompting with vision-language models such as GPT-4o for infant pain classification.