Roman Perik-Zavodskii, Olga Perik-Zavodskaia, Marina Volynets, Saleh Alrhmoun, Sergey Sennikov
{"title":"TCRscape:单细胞多组TCR分析工具包。","authors":"Roman Perik-Zavodskii, Olga Perik-Zavodskaia, Marina Volynets, Saleh Alrhmoun, Sergey Sennikov","doi":"10.3389/fbinf.2025.1641491","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Single-cell multi-omics has transformed T-cell biology by enabling the simultaneous analysis of T-cell receptor (TCR) sequences, transcriptomes, and surface proteins at the resolution of individual cells. These capabilities are critical for identifying antigen-specific T-cells and accelerating the development of TCR-based immunotherapies.</p><p><strong>Methods: </strong>Here, we introduce TCRscape, an open-source Python 3 tool designed for high-resolution T-cell receptor clonotype discovery and quantification, optimized for BD Rhapsody™ single-cell multi-omics data.</p><p><strong>Results: </strong>TCRscape integrates full-length TCR sequence data with gene expression profiles and surface protein expression to enable multimodal clustering of αβ and γδ T-cell populations. It also outputs Seurat-compatible matrices, facilitating downstream visualization and analysis in standard single-cell analysis environments.</p><p><strong>Discussion: </strong>By bridging clonotype detection with immune cell transcriptome, proteome, and antigen specificity profiling, TCRscape supports rapid identification of dominant T-cell clones and their functional phenotypes, offering a powerful resource for immune monitoring and TCR-engineered therapeutic development. TCRscape can be found at https://github.com/Perik-Zavodskii/TCRscape/.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1641491"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446293/pdf/","citationCount":"0","resultStr":"{\"title\":\"TCRscape: a single-cell multi-omic TCR profiling toolkit.\",\"authors\":\"Roman Perik-Zavodskii, Olga Perik-Zavodskaia, Marina Volynets, Saleh Alrhmoun, Sergey Sennikov\",\"doi\":\"10.3389/fbinf.2025.1641491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Single-cell multi-omics has transformed T-cell biology by enabling the simultaneous analysis of T-cell receptor (TCR) sequences, transcriptomes, and surface proteins at the resolution of individual cells. These capabilities are critical for identifying antigen-specific T-cells and accelerating the development of TCR-based immunotherapies.</p><p><strong>Methods: </strong>Here, we introduce TCRscape, an open-source Python 3 tool designed for high-resolution T-cell receptor clonotype discovery and quantification, optimized for BD Rhapsody™ single-cell multi-omics data.</p><p><strong>Results: </strong>TCRscape integrates full-length TCR sequence data with gene expression profiles and surface protein expression to enable multimodal clustering of αβ and γδ T-cell populations. It also outputs Seurat-compatible matrices, facilitating downstream visualization and analysis in standard single-cell analysis environments.</p><p><strong>Discussion: </strong>By bridging clonotype detection with immune cell transcriptome, proteome, and antigen specificity profiling, TCRscape supports rapid identification of dominant T-cell clones and their functional phenotypes, offering a powerful resource for immune monitoring and TCR-engineered therapeutic development. TCRscape can be found at https://github.com/Perik-Zavodskii/TCRscape/.</p>\",\"PeriodicalId\":73066,\"journal\":{\"name\":\"Frontiers in bioinformatics\",\"volume\":\"5 \",\"pages\":\"1641491\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbinf.2025.1641491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1641491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
TCRscape: a single-cell multi-omic TCR profiling toolkit.
Introduction: Single-cell multi-omics has transformed T-cell biology by enabling the simultaneous analysis of T-cell receptor (TCR) sequences, transcriptomes, and surface proteins at the resolution of individual cells. These capabilities are critical for identifying antigen-specific T-cells and accelerating the development of TCR-based immunotherapies.
Methods: Here, we introduce TCRscape, an open-source Python 3 tool designed for high-resolution T-cell receptor clonotype discovery and quantification, optimized for BD Rhapsody™ single-cell multi-omics data.
Results: TCRscape integrates full-length TCR sequence data with gene expression profiles and surface protein expression to enable multimodal clustering of αβ and γδ T-cell populations. It also outputs Seurat-compatible matrices, facilitating downstream visualization and analysis in standard single-cell analysis environments.
Discussion: By bridging clonotype detection with immune cell transcriptome, proteome, and antigen specificity profiling, TCRscape supports rapid identification of dominant T-cell clones and their functional phenotypes, offering a powerful resource for immune monitoring and TCR-engineered therapeutic development. TCRscape can be found at https://github.com/Perik-Zavodskii/TCRscape/.