SW-actors:通过actor加速Smith-Waterman算法。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-07-28 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf173
Reza Rafati Bonab, Ali Akbar Jamali, Kyle Klenk, Mohammad Mahdi Moayeri, Raymond J Spiteri
{"title":"SW-actors:通过actor加速Smith-Waterman算法。","authors":"Reza Rafati Bonab, Ali Akbar Jamali, Kyle Klenk, Mohammad Mahdi Moayeri, Raymond J Spiteri","doi":"10.1093/bioadv/vbaf173","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The Smith-Waterman (SW) algorithm is widely regarded as the gold standard for local sequence alignment. However, its time complexity in a serial implementation limits its practicality for large datasets. In this article, we introduce SW-actors, a parallel implementation of the SW algorithm that leverages the actor model of concurrent computation to optimize resource utilization by efficiently scheduling and managing independent alignment tasks across processors at both the interalignment and intraalignment levels.</p><p><strong>Results: </strong>SW-actors is compared with the state-of-the-art implementations Parasail, SeqAn, and SWIPE using four datasets of varying sequence lengths ranging from 85 to 74778 nucleotides. In terms of wall-clock time, SW-actors is 1.33 <math><mo>×</mo></math> , 2.00 <math><mo>×</mo></math> , 2.49 <math><mo>×</mo></math> , and 1.94 <math><mo>×</mo></math> faster than the next best implementation for the different datasets. SW-actors is up to 22 <math><mo>×</mo></math> faster than serial on 40 cores. The speedup is consistent for larger datasets and hence offers significant advantages for medium- to large-scale alignments.</p><p><strong>Availability and implementation: </strong>The SW-actors source code and underlying data are available at https://git.cs.usask.ca/numerical_simulations_lab/actors/papers/sw-actors.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf173"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449131/pdf/","citationCount":"0","resultStr":"{\"title\":\"SW-actors: accelerating the Smith-Waterman algorithm via actors.\",\"authors\":\"Reza Rafati Bonab, Ali Akbar Jamali, Kyle Klenk, Mohammad Mahdi Moayeri, Raymond J Spiteri\",\"doi\":\"10.1093/bioadv/vbaf173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The Smith-Waterman (SW) algorithm is widely regarded as the gold standard for local sequence alignment. However, its time complexity in a serial implementation limits its practicality for large datasets. In this article, we introduce SW-actors, a parallel implementation of the SW algorithm that leverages the actor model of concurrent computation to optimize resource utilization by efficiently scheduling and managing independent alignment tasks across processors at both the interalignment and intraalignment levels.</p><p><strong>Results: </strong>SW-actors is compared with the state-of-the-art implementations Parasail, SeqAn, and SWIPE using four datasets of varying sequence lengths ranging from 85 to 74778 nucleotides. In terms of wall-clock time, SW-actors is 1.33 <math><mo>×</mo></math> , 2.00 <math><mo>×</mo></math> , 2.49 <math><mo>×</mo></math> , and 1.94 <math><mo>×</mo></math> faster than the next best implementation for the different datasets. SW-actors is up to 22 <math><mo>×</mo></math> faster than serial on 40 cores. The speedup is consistent for larger datasets and hence offers significant advantages for medium- to large-scale alignments.</p><p><strong>Availability and implementation: </strong>The SW-actors source code and underlying data are available at https://git.cs.usask.ca/numerical_simulations_lab/actors/papers/sw-actors.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf173\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449131/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:Smith-Waterman (SW)算法被广泛认为是局部序列比对的金标准。然而,它在串行实现中的时间复杂性限制了它在大型数据集上的实用性。在本文中,我们将介绍SW-actor,这是一种SW算法的并行实现,它利用并发计算的actor模型,通过在对齐和对齐内部级别上高效地调度和管理跨处理器的独立对齐任务来优化资源利用。结果:使用四个不同序列长度的数据集,从85到74778个核苷酸,将SW-actors与最先进的实现Parasail, SeqAn和SWIPE进行比较。就时钟时间而言,对于不同的数据集,SW-actors比下一个最佳实现快1.33倍、2.00倍、2.49倍和1.94倍。SW-actors比40核的串行速度快22倍。对于较大的数据集,加速是一致的,因此为中型到大规模的比对提供了显著的优势。可用性和实现:sw参与者的源代码和底层数据可在https://git.cs.usask.ca/numerical_simulations_lab/actors/papers/sw-actors上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SW-actors: accelerating the Smith-Waterman algorithm via actors.

SW-actors: accelerating the Smith-Waterman algorithm via actors.

SW-actors: accelerating the Smith-Waterman algorithm via actors.

SW-actors: accelerating the Smith-Waterman algorithm via actors.

Motivation: The Smith-Waterman (SW) algorithm is widely regarded as the gold standard for local sequence alignment. However, its time complexity in a serial implementation limits its practicality for large datasets. In this article, we introduce SW-actors, a parallel implementation of the SW algorithm that leverages the actor model of concurrent computation to optimize resource utilization by efficiently scheduling and managing independent alignment tasks across processors at both the interalignment and intraalignment levels.

Results: SW-actors is compared with the state-of-the-art implementations Parasail, SeqAn, and SWIPE using four datasets of varying sequence lengths ranging from 85 to 74778 nucleotides. In terms of wall-clock time, SW-actors is 1.33 × , 2.00 × , 2.49 × , and 1.94 × faster than the next best implementation for the different datasets. SW-actors is up to 22 × faster than serial on 40 cores. The speedup is consistent for larger datasets and hence offers significant advantages for medium- to large-scale alignments.

Availability and implementation: The SW-actors source code and underlying data are available at https://git.cs.usask.ca/numerical_simulations_lab/actors/papers/sw-actors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信