{"title":"环境变化导致的突变和生物多样性损失的有效解耦。","authors":"Ruixi Huang , David Waxman","doi":"10.1016/j.jtbi.2025.112277","DOIUrl":null,"url":null,"abstract":"<div><div>Many biological populations exhibit diversity in their strategy for survival and reproduction in a given environment, and microbes are an example. We explore the fate of different strategies under sustained environmental change by considering a mathematical model for a large population of asexual organisms. Fitness is a bimodal function of a quantitative trait, with two local optima, separated by a local minimum, i.e., a mixture of stabilising and disruptive selection. The optima represent two locally ‘best’ trait values. We consider regimes where, when the environment is unchanging, the equilibrium distribution of the trait is bimodal. A bimodal trait distribution generally requires, for its existence, mutational coupling between the two peaks, and it indicates two coexisting clones with distinct survival and reproduction strategies. When subject to persistent environmental change, the population adapts by utilising mutations that allow it to track the changing environment. The faster the rate of change of the environment, the larger the effect of the mutations that are utilised. Under persistent environmental change, the distribution of trait values takes two different forms. At low rates of change, the distribution remains bimodal. At higher rates, the distribution becomes unimodal. This loss of a clone/biodiversity is driven by a novel mechanism where environmental change decouples a class of mutations.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"616 ","pages":"Article 112277"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective decoupling of mutations and the resulting loss of biodiversity caused by environmental change\",\"authors\":\"Ruixi Huang , David Waxman\",\"doi\":\"10.1016/j.jtbi.2025.112277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many biological populations exhibit diversity in their strategy for survival and reproduction in a given environment, and microbes are an example. We explore the fate of different strategies under sustained environmental change by considering a mathematical model for a large population of asexual organisms. Fitness is a bimodal function of a quantitative trait, with two local optima, separated by a local minimum, i.e., a mixture of stabilising and disruptive selection. The optima represent two locally ‘best’ trait values. We consider regimes where, when the environment is unchanging, the equilibrium distribution of the trait is bimodal. A bimodal trait distribution generally requires, for its existence, mutational coupling between the two peaks, and it indicates two coexisting clones with distinct survival and reproduction strategies. When subject to persistent environmental change, the population adapts by utilising mutations that allow it to track the changing environment. The faster the rate of change of the environment, the larger the effect of the mutations that are utilised. Under persistent environmental change, the distribution of trait values takes two different forms. At low rates of change, the distribution remains bimodal. At higher rates, the distribution becomes unimodal. This loss of a clone/biodiversity is driven by a novel mechanism where environmental change decouples a class of mutations.</div></div>\",\"PeriodicalId\":54763,\"journal\":{\"name\":\"Journal of Theoretical Biology\",\"volume\":\"616 \",\"pages\":\"Article 112277\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519325002437\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519325002437","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Effective decoupling of mutations and the resulting loss of biodiversity caused by environmental change
Many biological populations exhibit diversity in their strategy for survival and reproduction in a given environment, and microbes are an example. We explore the fate of different strategies under sustained environmental change by considering a mathematical model for a large population of asexual organisms. Fitness is a bimodal function of a quantitative trait, with two local optima, separated by a local minimum, i.e., a mixture of stabilising and disruptive selection. The optima represent two locally ‘best’ trait values. We consider regimes where, when the environment is unchanging, the equilibrium distribution of the trait is bimodal. A bimodal trait distribution generally requires, for its existence, mutational coupling between the two peaks, and it indicates two coexisting clones with distinct survival and reproduction strategies. When subject to persistent environmental change, the population adapts by utilising mutations that allow it to track the changing environment. The faster the rate of change of the environment, the larger the effect of the mutations that are utilised. Under persistent environmental change, the distribution of trait values takes two different forms. At low rates of change, the distribution remains bimodal. At higher rates, the distribution becomes unimodal. This loss of a clone/biodiversity is driven by a novel mechanism where environmental change decouples a class of mutations.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.