Nóra Frankl, Panna Gehér, Arsenii Sagdeev, Géza Tóth
{"title":"闵可夫斯基平面上的单色无限集。","authors":"Nóra Frankl, Panna Gehér, Arsenii Sagdeev, Géza Tóth","doi":"10.1007/s00454-024-00702-5","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that for any <math><msub><mi>ℓ</mi> <mi>p</mi></msub> </math> -norm in the plane with <math><mrow><mn>1</mn> <mo><</mo> <mi>p</mi> <mo><</mo> <mi>∞</mi></mrow> </math> and for every infinite <math><mrow><mi>M</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </mrow> </math> , there exists a two-colouring of the plane such that no isometric copy of <math><mi>M</mi></math> is monochromatic. On the contrary, we show that for every polygonal norm (that is, the unit ball is a polygon) in the plane, there exists an infinite <math><mrow><mi>M</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </mrow> </math> such that for every two-colouring of the plane there exists a monochromatic isometric copy of <math><mi>M</mi></math> .</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"74 2","pages":"569-583"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449424/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monochromatic Infinite Sets in Minkowski Planes.\",\"authors\":\"Nóra Frankl, Panna Gehér, Arsenii Sagdeev, Géza Tóth\",\"doi\":\"10.1007/s00454-024-00702-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prove that for any <math><msub><mi>ℓ</mi> <mi>p</mi></msub> </math> -norm in the plane with <math><mrow><mn>1</mn> <mo><</mo> <mi>p</mi> <mo><</mo> <mi>∞</mi></mrow> </math> and for every infinite <math><mrow><mi>M</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </mrow> </math> , there exists a two-colouring of the plane such that no isometric copy of <math><mi>M</mi></math> is monochromatic. On the contrary, we show that for every polygonal norm (that is, the unit ball is a polygon) in the plane, there exists an infinite <math><mrow><mi>M</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </mrow> </math> such that for every two-colouring of the plane there exists a monochromatic isometric copy of <math><mi>M</mi></math> .</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"74 2\",\"pages\":\"569-583\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449424/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00702-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00702-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We prove that for any -norm in the plane with and for every infinite , there exists a two-colouring of the plane such that no isometric copy of is monochromatic. On the contrary, we show that for every polygonal norm (that is, the unit ball is a polygon) in the plane, there exists an infinite such that for every two-colouring of the plane there exists a monochromatic isometric copy of .
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.