{"title":"gyōza:一个用于深度突变扫描数据的模块化分析的Snakemake工作流。","authors":"Romain Durand, Alicia Pageau, Christian R Landry","doi":"10.1093/genetics/iyaf199","DOIUrl":null,"url":null,"abstract":"<p><p>Deep-mutational scanning (DMS) is a powerful technique that allows screening large libraries of mutants at high throughput. It has been used in many applications, including to estimate the fitness impact of all single mutants of entire proteins, to catalog drug resistance mutations and even to predict protein structures. Here, we present gyōza, a Snakemake-based workflow to analyze DMS data. gyōza requires little programming knowledge and comes with comprehensive documentation to help the user go from raw sequencing data to functional impact scores. Complete with quality control and an automatically generated HTML report, this new pipeline should facilitate the analysis of time-series DMS experiments. gyōza is freely available on GitHub (https://github.com/durr1602/gyoza).</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"gyōza: a Snakemake workflow for modular analysis of deep-mutational scanning data.\",\"authors\":\"Romain Durand, Alicia Pageau, Christian R Landry\",\"doi\":\"10.1093/genetics/iyaf199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep-mutational scanning (DMS) is a powerful technique that allows screening large libraries of mutants at high throughput. It has been used in many applications, including to estimate the fitness impact of all single mutants of entire proteins, to catalog drug resistance mutations and even to predict protein structures. Here, we present gyōza, a Snakemake-based workflow to analyze DMS data. gyōza requires little programming knowledge and comes with comprehensive documentation to help the user go from raw sequencing data to functional impact scores. Complete with quality control and an automatically generated HTML report, this new pipeline should facilitate the analysis of time-series DMS experiments. gyōza is freely available on GitHub (https://github.com/durr1602/gyoza).</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf199\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf199","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
gyōza: a Snakemake workflow for modular analysis of deep-mutational scanning data.
Deep-mutational scanning (DMS) is a powerful technique that allows screening large libraries of mutants at high throughput. It has been used in many applications, including to estimate the fitness impact of all single mutants of entire proteins, to catalog drug resistance mutations and even to predict protein structures. Here, we present gyōza, a Snakemake-based workflow to analyze DMS data. gyōza requires little programming knowledge and comes with comprehensive documentation to help the user go from raw sequencing data to functional impact scores. Complete with quality control and an automatically generated HTML report, this new pipeline should facilitate the analysis of time-series DMS experiments. gyōza is freely available on GitHub (https://github.com/durr1602/gyoza).
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.