Skyler Berardi, Jessica A Rhodes, Mary Catherine Berner, Sharon I Greenblum, Mark C Bitter, Emily L Behrman, Nicolas J Betancourt, Alan O Bergland, Dmitri A Petrov, Subhash Rajpurohit, Paul Schmidt
{"title":"黑腹果蝇色素沉着表现出在多个时空尺度上的适应性表型平行性。","authors":"Skyler Berardi, Jessica A Rhodes, Mary Catherine Berner, Sharon I Greenblum, Mark C Bitter, Emily L Behrman, Nicolas J Betancourt, Alan O Bergland, Dmitri A Petrov, Subhash Rajpurohit, Paul Schmidt","doi":"10.1093/evlett/qraf008","DOIUrl":null,"url":null,"abstract":"<p><p>Populations are capable of responding to environmental change over ecological timescales via adaptive tracking. However, the translation from patterns of allele frequency change to rapid adaptation of complex traits remains unresolved. We used abdominal pigmentation in <i>Drosophila melanogaster</i> as a model phenotype to address the nature, genetic architecture, and repeatability of rapid adaptation in the field. We show that <i>D. melanogaster</i> pigmentation evolves as a highly parallel and deterministic response to shared environmental variation across latitude and season in natural North American populations. We then experimentally evolved replicate, genetically diverse fly populations in field mesocosms to remove any confounding effects of demography and/or cryptic structure that may drive patterns in wild populations; we show that pigmentation rapidly responds, in parallel, in fewer than 15 generations. Thus, pigmentation evolves concordantly in response to spatial and temporal climatic axes. We next examined whether phenotypic differentiation was associated with allele frequency change at loci with established links to genetic variance in pigmentation in natural populations. We found that across all spatial and temporal scales, phenotypic patterns were associated with variation at pigmentation-related loci, and the sets of genes we identified at each scale were largely nonoverlapping. Therefore, our findings suggest that parallel phenotypic evolution is associated with distinct components of the polygenic architecture shifting across each environmental axis to produce redundant adaptive patterns.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 4","pages":"408-420"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448190/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Drosophila melanogaster</i> pigmentation demonstrates adaptive phenotypic parallelism over multiple spatiotemporal scales.\",\"authors\":\"Skyler Berardi, Jessica A Rhodes, Mary Catherine Berner, Sharon I Greenblum, Mark C Bitter, Emily L Behrman, Nicolas J Betancourt, Alan O Bergland, Dmitri A Petrov, Subhash Rajpurohit, Paul Schmidt\",\"doi\":\"10.1093/evlett/qraf008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Populations are capable of responding to environmental change over ecological timescales via adaptive tracking. However, the translation from patterns of allele frequency change to rapid adaptation of complex traits remains unresolved. We used abdominal pigmentation in <i>Drosophila melanogaster</i> as a model phenotype to address the nature, genetic architecture, and repeatability of rapid adaptation in the field. We show that <i>D. melanogaster</i> pigmentation evolves as a highly parallel and deterministic response to shared environmental variation across latitude and season in natural North American populations. We then experimentally evolved replicate, genetically diverse fly populations in field mesocosms to remove any confounding effects of demography and/or cryptic structure that may drive patterns in wild populations; we show that pigmentation rapidly responds, in parallel, in fewer than 15 generations. Thus, pigmentation evolves concordantly in response to spatial and temporal climatic axes. We next examined whether phenotypic differentiation was associated with allele frequency change at loci with established links to genetic variance in pigmentation in natural populations. We found that across all spatial and temporal scales, phenotypic patterns were associated with variation at pigmentation-related loci, and the sets of genes we identified at each scale were largely nonoverlapping. Therefore, our findings suggest that parallel phenotypic evolution is associated with distinct components of the polygenic architecture shifting across each environmental axis to produce redundant adaptive patterns.</p>\",\"PeriodicalId\":48629,\"journal\":{\"name\":\"Evolution Letters\",\"volume\":\"9 4\",\"pages\":\"408-420\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/evlett/qraf008\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qraf008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Populations are capable of responding to environmental change over ecological timescales via adaptive tracking. However, the translation from patterns of allele frequency change to rapid adaptation of complex traits remains unresolved. We used abdominal pigmentation in Drosophila melanogaster as a model phenotype to address the nature, genetic architecture, and repeatability of rapid adaptation in the field. We show that D. melanogaster pigmentation evolves as a highly parallel and deterministic response to shared environmental variation across latitude and season in natural North American populations. We then experimentally evolved replicate, genetically diverse fly populations in field mesocosms to remove any confounding effects of demography and/or cryptic structure that may drive patterns in wild populations; we show that pigmentation rapidly responds, in parallel, in fewer than 15 generations. Thus, pigmentation evolves concordantly in response to spatial and temporal climatic axes. We next examined whether phenotypic differentiation was associated with allele frequency change at loci with established links to genetic variance in pigmentation in natural populations. We found that across all spatial and temporal scales, phenotypic patterns were associated with variation at pigmentation-related loci, and the sets of genes we identified at each scale were largely nonoverlapping. Therefore, our findings suggest that parallel phenotypic evolution is associated with distinct components of the polygenic architecture shifting across each environmental axis to produce redundant adaptive patterns.
期刊介绍:
Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology.
Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.