复杂域上分位数空间变系数模型的估计与推理。

IF 3 1区 数学 Q1 STATISTICS & PROBABILITY
Myungjin Kim, Lily Wang, Huixia Judy Wang
{"title":"复杂域上分位数空间变系数模型的估计与推理。","authors":"Myungjin Kim, Lily Wang, Huixia Judy Wang","doi":"10.1080/01621459.2025.2480867","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a flexible quantile spatially varying coefficient model (QSVCM) for the regression analysis of spatial data. The proposed model enables researchers to assess the dependence of conditional quantiles of the response variable on covariates while accounting for spatial nonstationarity. Our approach facilitates learning and interpreting heterogeneity in spatial data distributed over complex or irregular domains. We introduce a quantile regression method that utilizes bivariate penalized splines in triangulation to estimate unknown functional coefficients. We establish the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> convergence of the proposed estimators, demonstrating their optimal convergence rate under certain regularity conditions. An efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM). We develop wild residual bootstrap-based pointwise confidence intervals for the QSVCM quantile coefficients. Furthermore, we construct reliable conformal prediction intervals for the response variable using the proposed QSVCM. Simulation studies show the remarkable performance of the proposed methods. Lastly, we illustrate the practical applicability of our methods by analyzing the mortality dataset and the supplementary particulate matter (PM) dataset in the United States.</p>","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimation and Inference of Quantile Spatially Varying Coefficient Models Over Complicated Domains.\",\"authors\":\"Myungjin Kim, Lily Wang, Huixia Judy Wang\",\"doi\":\"10.1080/01621459.2025.2480867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a flexible quantile spatially varying coefficient model (QSVCM) for the regression analysis of spatial data. The proposed model enables researchers to assess the dependence of conditional quantiles of the response variable on covariates while accounting for spatial nonstationarity. Our approach facilitates learning and interpreting heterogeneity in spatial data distributed over complex or irregular domains. We introduce a quantile regression method that utilizes bivariate penalized splines in triangulation to estimate unknown functional coefficients. We establish the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> convergence of the proposed estimators, demonstrating their optimal convergence rate under certain regularity conditions. An efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM). We develop wild residual bootstrap-based pointwise confidence intervals for the QSVCM quantile coefficients. Furthermore, we construct reliable conformal prediction intervals for the response variable using the proposed QSVCM. Simulation studies show the remarkable performance of the proposed methods. Lastly, we illustrate the practical applicability of our methods by analyzing the mortality dataset and the supplementary particulate matter (PM) dataset in the United States.</p>\",\"PeriodicalId\":17227,\"journal\":{\"name\":\"Journal of the American Statistical Association\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Statistical Association\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01621459.2025.2480867\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Statistical Association","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2025.2480867","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种灵活的分位数空间变系数模型(QSVCM),用于空间数据的回归分析。提出的模型使研究人员能够评估响应变量的条件分位数对协变量的依赖性,同时考虑到空间非平稳性。我们的方法有助于学习和解释分布在复杂或不规则域的空间数据的异质性。我们介绍了一种分位数回归方法,该方法利用三角剖分中的二元惩罚样条来估计未知的泛函系数。我们建立了所提估计量的l2收敛性,证明了它们在一定正则性条件下的最优收敛率。利用乘法器的交替方向法,提出了一种高效的优化算法。我们开发了基于野残差自举的QSVCM分位数系数的点置信区间。此外,我们使用所提出的QSVCM构造可靠的响应变量适形预测区间。仿真研究表明了所提方法的显著性能。最后,我们通过分析美国的死亡率数据集和补充颗粒物(PM)数据集来说明我们方法的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation and Inference of Quantile Spatially Varying Coefficient Models Over Complicated Domains.

This paper presents a flexible quantile spatially varying coefficient model (QSVCM) for the regression analysis of spatial data. The proposed model enables researchers to assess the dependence of conditional quantiles of the response variable on covariates while accounting for spatial nonstationarity. Our approach facilitates learning and interpreting heterogeneity in spatial data distributed over complex or irregular domains. We introduce a quantile regression method that utilizes bivariate penalized splines in triangulation to estimate unknown functional coefficients. We establish the L 2 convergence of the proposed estimators, demonstrating their optimal convergence rate under certain regularity conditions. An efficient optimization algorithm is developed using the alternating direction method of multipliers (ADMM). We develop wild residual bootstrap-based pointwise confidence intervals for the QSVCM quantile coefficients. Furthermore, we construct reliable conformal prediction intervals for the response variable using the proposed QSVCM. Simulation studies show the remarkable performance of the proposed methods. Lastly, we illustrate the practical applicability of our methods by analyzing the mortality dataset and the supplementary particulate matter (PM) dataset in the United States.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
8.10%
发文量
168
审稿时长
12 months
期刊介绍: Established in 1888 and published quarterly in March, June, September, and December, the Journal of the American Statistical Association ( JASA ) has long been considered the premier journal of statistical science. Articles focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences. Important books contributing to statistical advancement are reviewed in JASA . JASA is indexed in Current Index to Statistics and MathSci Online and reviewed in Mathematical Reviews. JASA is abstracted by Access Company and is indexed and abstracted in the SRM Database of Social Research Methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信