muridarum衣原体假定的细胞毒素位点的完全缺失揭示了在组织培养和小鼠生殖道感染期间的输卵管病理侵袭过程中的贡献。

IF 2.8 3区 医学 Q3 IMMUNOLOGY
Infection and Immunity Pub Date : 2025-10-14 Epub Date: 2025-09-22 DOI:10.1128/iai.00419-25
Lucie H Berclaz, Gracie Eicher, Grace Wieselquist, Akosua Frimpong, Aria Mallare, Rebeccah S Lijek, Kenneth A Fields
{"title":"muridarum衣原体假定的细胞毒素位点的完全缺失揭示了在组织培养和小鼠生殖道感染期间的输卵管病理侵袭过程中的贡献。","authors":"Lucie H Berclaz, Gracie Eicher, Grace Wieselquist, Akosua Frimpong, Aria Mallare, Rebeccah S Lijek, Kenneth A Fields","doi":"10.1128/iai.00419-25","DOIUrl":null,"url":null,"abstract":"<p><p>Chlamydiaceae is a family of obligate intracellular bacteria that infect a wide range of human and animal hosts. <i>Chlamydia muridarum</i> is a murine-specific species that has been leveraged as an efficacious model of disease mediated by human-specific <i>Chlamydia trachomatis</i>. Genes within the plasticity zone, a region of the chromosome with increased genetic variation across species and serovars, are speculated to contribute to species-specific pathogenesis. <i>C. muridarum</i> expresses three homologous proteins (TC0437-0439) that show similarity to large clostridial cytotoxins. The putative chlamydial cytotoxins have been proposed to mediate immediate toxicity in highly infected epithelial cells by interfering with actin polymerization. We utilized FRAEM mutagenesis to delete all three putative cytotoxins (<i>tc0437-0439</i>). The null strain retained immediate cytotoxicity but exhibited decreased invasion efficiency in tissue culture. During murine infections of the female genital tract, the absence of the putative cytotoxins caused decreased oviduct pathology and did not impact bacterial burden in the upper genital tract. These results indicate that the putative cytotoxins contribute to infection at the cellular level and in the female genital tract of mice.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0041925"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12519784/pdf/","citationCount":"0","resultStr":"{\"title\":\"Complete deletion of the <i>Chlamydia muridarum</i> putative cytotoxin locus reveals contributions during invasion in tissue culture and oviduct pathology during murine genital tract infection.\",\"authors\":\"Lucie H Berclaz, Gracie Eicher, Grace Wieselquist, Akosua Frimpong, Aria Mallare, Rebeccah S Lijek, Kenneth A Fields\",\"doi\":\"10.1128/iai.00419-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chlamydiaceae is a family of obligate intracellular bacteria that infect a wide range of human and animal hosts. <i>Chlamydia muridarum</i> is a murine-specific species that has been leveraged as an efficacious model of disease mediated by human-specific <i>Chlamydia trachomatis</i>. Genes within the plasticity zone, a region of the chromosome with increased genetic variation across species and serovars, are speculated to contribute to species-specific pathogenesis. <i>C. muridarum</i> expresses three homologous proteins (TC0437-0439) that show similarity to large clostridial cytotoxins. The putative chlamydial cytotoxins have been proposed to mediate immediate toxicity in highly infected epithelial cells by interfering with actin polymerization. We utilized FRAEM mutagenesis to delete all three putative cytotoxins (<i>tc0437-0439</i>). The null strain retained immediate cytotoxicity but exhibited decreased invasion efficiency in tissue culture. During murine infections of the female genital tract, the absence of the putative cytotoxins caused decreased oviduct pathology and did not impact bacterial burden in the upper genital tract. These results indicate that the putative cytotoxins contribute to infection at the cellular level and in the female genital tract of mice.</p>\",\"PeriodicalId\":13541,\"journal\":{\"name\":\"Infection and Immunity\",\"volume\":\" \",\"pages\":\"e0041925\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12519784/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/iai.00419-25\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00419-25","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

衣原菌科是一类专性细胞内细菌,广泛感染人类和动物宿主。沙眼衣原体是一种小鼠特异性物种,已被利用作为人类特异性沙眼衣原体介导的疾病的有效模型。可塑性区是染色体上的一个区域,在物种和血清型中遗传变异增加,据推测,可塑性区内的基因有助于物种特异性发病。C. muridarum表达三个同源蛋白(TC0437-0439),显示出与大型梭状芽胞杆菌细胞毒素相似。假设的衣原体细胞毒素通过干扰肌动蛋白聚合介导高度感染上皮细胞的立即毒性。我们利用FRAEM诱变法删除了所有三种假定的细胞毒素(tc0437-0439)。空白菌株在组织培养中保留了立即的细胞毒性,但表现出较低的侵袭效率。在雌性生殖道感染的小鼠中,假定的细胞毒素的缺失导致输卵管病理减少,并且不影响上生殖道的细菌负荷。这些结果表明,假定的细胞毒素在细胞水平和小鼠雌性生殖道中参与感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete deletion of the Chlamydia muridarum putative cytotoxin locus reveals contributions during invasion in tissue culture and oviduct pathology during murine genital tract infection.

Chlamydiaceae is a family of obligate intracellular bacteria that infect a wide range of human and animal hosts. Chlamydia muridarum is a murine-specific species that has been leveraged as an efficacious model of disease mediated by human-specific Chlamydia trachomatis. Genes within the plasticity zone, a region of the chromosome with increased genetic variation across species and serovars, are speculated to contribute to species-specific pathogenesis. C. muridarum expresses three homologous proteins (TC0437-0439) that show similarity to large clostridial cytotoxins. The putative chlamydial cytotoxins have been proposed to mediate immediate toxicity in highly infected epithelial cells by interfering with actin polymerization. We utilized FRAEM mutagenesis to delete all three putative cytotoxins (tc0437-0439). The null strain retained immediate cytotoxicity but exhibited decreased invasion efficiency in tissue culture. During murine infections of the female genital tract, the absence of the putative cytotoxins caused decreased oviduct pathology and did not impact bacterial burden in the upper genital tract. These results indicate that the putative cytotoxins contribute to infection at the cellular level and in the female genital tract of mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infection and Immunity
Infection and Immunity 医学-传染病学
CiteScore
6.00
自引率
6.50%
发文量
268
审稿时长
3 months
期刊介绍: Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信